DERRIDA’S MACHINES PART 111

BYTES PIECES

of

PolylLogics, m-Lambda Calculi,
ConTeXitures

Lambda Calculi in Polycontextural
Situations

© by Rudolf Kaehr
ThinkArt Lab Glasgow Hallowe’en 2005

"Interactivity is all there is to write about:
it is the paradox and

the horizon of realization.”

© Rudolf Kaehr

Februar 16, 2006 10/11/05 DRAFT DERRIDA'S MACHINES

Lambda Calculi in Polycontextural Situations

A. Architectonics for Disseminated Formal Systems

1

General considerations 5

1.1 Signatures, place-holders and architectonics 6
1.2 Knots, the Celtic Connection 7
1.3 Tree patterns: linear, arboreal and stars 7

Advanced Architectonics for tabular PolyLogics 8

2.1 Asimple star-pattern 8

2.2 A simple starline-pattern 9

2.3 Distributed cyclic patterns 10

2.4 Birkhoff Arithmetics of Chiasms 11

B. Lambda Calculi in Polycontextural Situations

1
2

Remembering the beginnings 14

Sketch of the Lambda Calculus Essentials 15

2.1 Assembling the elements 15
2.2 Reductions vs. abstraction rules 18
2.3 Church-Rosser-Theorem 20

2.4 Connecting the lambda calculus to the rest of the formal
world 21

2.5 Combinators 22
2.6 Fixed-point theorem: the Y-operator 23

Main results 24

General framework for Lambda Calculi in Contextures

4.1 Lambda Calculi disseminated 26

4.2 ARS, ConTeXtures and Lambda Calculi 27

4.3 Free and bound in contextures 28

4.4 Algebras and co-algebras 28

4.5 General Syntax for distributed lambda calculi 29
4.6 Signatures for m-lambda calculi 35

4.7 Lambda calculi as trees 36

Lambda Calculi in a 3-contextural situation 40

5.1 Syntactic rules 40

5.2 Super-operators 43

5.3 A family of substitutions 44

5.4 General Constellations of Transformations 46

5.5 Connecting poly-lambda calculi to a complex formal world 56

Annoy the deadheads! 57

6.1 A simple identical constellation 57

6.2 Internal vs. external super-operators 58
6.3 Internal vs. external super-operators 59
6.4 A permutational constellation 61

6.5 A reductional constellation 61

6.6 An interactional constellation 61

6.7 A reflectional constellation 62

More to Bore: From Y to Why 63

7.1 Remembering 63

7.2 Distributed Y-Operators 64

7.3 Why not some Why-operators? 65

7.4 Graph diagrams for Y and WHY 66

7.5 lterability in Y- and WHY-operators 67

7.6 Combinators in the general context of iterability 73

25

8 Don’t halt the halting problem to halt 79
9 Reductional closure 80
9.1 Combining super-operators 80
10 Towards General Architectonics for Lambda Calculi 81
10.1 Architectonics with 4 contextures: One more stroke! 81
10.2 Architectonics with 5 and more strokes (contextures) 85
11 Some ends are just beginnings 87
C. Types and Contextures
1 Types in Lambda Calculus 90
2 Towards chiastic types in LC(™ 91
2.1 Basic chiasms of types 91
3 Further developments: Type Derivations 96
3.1 Monocontextural type derivations 96
3.2 Metatheoretic results 96
3.3 Complexity as polymorphism of types 97
3.4 Complexity as polycontexturality of calculi 98
3.5 Metamorphic type transformations 99
4 Types and Paradoxes 99
© Rudolf Kaehr Februar 16, 2006 ~ 10/11/05 DRAFT DERRIDA‘'S MACHINES

A. Architectonics for Disseminated
Formal Systems

(PolyLogics, ConTeXtures, m-Lambda Calculi, m-Combinatory Logics)

1 General considerations

The idea of polycontexturality is based on compositions and decompositions of struc-
tures and their interpretation by formal systems, logics, arithmetics, semiotics. Each
part of a complex compound can be logificated, that is, interpreted as a base for a
logical system. Each sub-graph of a complex graph can be logificated. This turns the
general sub-graph into a directed sub-graph. Sub-graphs are composed to a graph by
means of the proemial relation. This is emphasizing the fact that the end of a connected
sub-graph is the beginning of another sub-graph. What is considered as a component
of a compound is a decision of modeling and has no ontological status. Thus, a com-
pound can become a component and a component con be modeled as a compound
following the rules of proemiality and chiasm in a iterative or recursive sense.

As an example of a chiasm between intra- and trans-contextural patterns the nega-
tional systems of linear architectonics produced by polycontextural negations can be
thematized as regular decentralized architectonic patterns of new polycontextural sys-
tems delivering all sorts of shortest path and Hamiltonian cycles. Architectonic circular-
ity should not be confused with self-referentiality of sentences.

To apply graph systems to polycontexturality they have to be interpreted as directed
graph systems because contextures have locally, intra-contextural, a linear ordered
structure. Especially logical systems are linear by their basic terms.

Additional to linear and arboreal graphs, the structure of graph systems can be clas-
sified as centralized, de-centralized and distributed.

Diagramm 1 Centralized, de-centralized and distributed graphs

PECENTRMLIZED DiSTR@UTED
1Rj 14}

Fii | = Ceniraliped, Decerdrsiingd srd DorliBafed Nelwsos

http://thekla-guk.ch/hyperfiction05/index_hyperficO5.html

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

http://thekla-guk.ch/hyperfiction05/index_hyperfic05.html

Non-linear mediated polylogics can be linked to m-categories and modal logics for
further explanation and formalization. On the other hand it may turn out that such non-
linear, tabular polylogics can serve as logical foundations of m-categories which
shouldn’t be based on predicate logic only.

Graph-theoretic studies on polycontextural, morphogrammatic and negational sys-
tems had been done in the 70th esp. by Gerhard Thomas. They also had been con-
nected to Birkhoff numbers by Schadach, Thomas and Kaehr. Special interest was put
on Hamilton cycles and other "labyrinths™ following Gunther’s project of developing a
"negative language". But there was no working concept to interpret those structures
logically.

1.1 Signatures and place-holders

A term, object, entity belongs to a formal system-or it doesn’t belong to it. Then it is
not a term of the formal system. In a situation of a multitude of formal systems or calculi,
a term which doesn’t belong to a calculus, may belong to another one. To indicate this
situation we can use signed terms and formulas. These signatures for bi-objectional sys-
tems are not necessarily connected with logical meanings. They can represent all kinds
of basic framework related oppositions in formal systems, like true/false, acceptance/
rejection, opponent/proponent, antecedent/succedent, marked/unmarked.

Signatures are a kind of place-holders, locators, not only for formulas but for formal
systems as such. They are positioning formal systems in the polycontextural grid. Thus,
disseminated formal systems are located, marked by their locators. The metaphor of
inscription gets an explication by signatures as place-holders, or locators, of the in-
scribed formal systems. A classical formal system is a system with a place-holder of
value 1, which, obviously, can be omitted.

These locations are structured by the architectonics of the system. Different kinds of
mediations are connecting the components of the distribution together.

ym g g o cm Linear 3-structure:
T H, iff H, eLC,

FH iff H ¢LC,ies(m)
H, ¢ LC, iff H eLC,
T H, T, K = (HK,)eLC,
H €LC, = H =H,

v(s) H(s) : H(3) c LC ©)

H, ¢ LC, iff H, €LC,
H eLC, iff H €LC,
H, ¢ LC, iff H, o4 LC3

More about mediation and proemial relationship at:
Proemiality of PolyLogics: http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

http://www.thinkartlab.com/pkl/lola/PolyLogics.pdf

1.2 Mediators for 3-linear systems

[X3 T T, [, T, Conditions of mediation (CM):
12
X+ 20RO, D T,H, =T, H,
23
X2 O F FH ~T,H,
'Xl.l' - ~
1,10, F,H, = F,H,

X2 |ROF,,T,,®
X2.l Q,D'Z’[H:l

(XM ([T, [T,0,00,] [T, 0,00, 1 [T,,0,00,
x| =0|F,F.@ | OF,F O 0T, 0.@ | JT,0,,
X1 oF,F0 (o000 |oF F K0 |o0,0,

|

The distribution and mediation of 3 bi-objectional systems is realized as a matrix of
sub-systems accepting the conditions of mediation (CM).

Mediators are constructors producing the complexions of distributed formal systems
respecting the conditions of mediation (CM) and the order of architecture (3-linear).

medjinear(S1, S2, S3) = (Sy23) = S®

1.3 Morphograms of distributed colored systems
Pattern of the distribution of 3 different colored systems over 3 loci abstracting from
their qualifying colors or sub-system indices.

These formal patterns are the morphograms (MG) of
MG' MG® MG® MG* MG® the distribution.

@ EINE) RID Morphograms are the results of the application of the

morphic abstraction of the behaviors of formal sys-
(B T [T (AT tems. Behaviors of systems are represented by the

(¢ [MTH MTaMMMTBMMTAIN permutations of its components. Transformational be-
haviors like reductions are producing different mor-
phograms.

Morphograms are independent from the permutations of the bi-objectional valua-

tions of the occupied loci. Thus, systems like S;171 and S333 or S;53 and S,43 are mor-
phogrammatic equivalent and are represented by the morphogram MG>.

([T,,0&,0, 1) (T,,[@,T, 1) ([T,,08,00T, 1)
morph(l| T,,[0,,@ || = morph(l perm® | T,,[T,,[@ ||Zorph| |T,,T,,[®
@,m,,, @m0, @,m,,T,

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

1.4 Knots, the Celtic Connection

Knots as an architectonic pattern would introduce a new dimension into polycontex-
turality. As far as knots can be represented by their parts they are accessible to a poly-
contextural modeling. Proemiality is not excluding knot-structures. Therefore,
polycontextural systems based on knot-architectonics could be constructed by the
means of a specific application of the proemial relation.

http://www.earlham.edu/~peters/knotlink.htm
http://www.maths.warwick.ac.uk/~bjs/MA3F2-page.html

1.5 Tree patterns: linear, arboreal and stars
A tabular and matrix approach to polylogics opens up a quite natural semantic in-
terpretation of non-linear mediated logical systems.

The numbers of tree structures are given by b(m). Tree structures are abstracted from
rooted trees.

Interestingly, for m>6, tree structures are growing rapidly, so for m=13, we have
1301 different tree structures, producing 1301 different types of architectonics of the
mediation of formal systems. These numbers are growing further with the introduction
of rooted trees, where we have to consider some kind of origins of the tree.

Baumstrukturen : Anzahlen :
m 3 4 5 m b(m)
1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47
10 106
11 235
12 551
b(m)] > 3 13 1301

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

http://www.earlham.edu/~peters/knotlink.htm
http://www.maths.warwick.ac.uk/~bjs/MA3F2-page.html

2 Advanced Architectonics for tabular PolyLogics

New notational challenges of complexities are naturally occurring for the case of
non-linearly ordered mediation of logics. Additional to the known linear chiasms a new
kind of over-determination enters the game. The examples shows simple star-pattern for
distributed logical systems. The numeration is different from the linear case and the re-
lations are reduced to the order and exchange relation excluding mediated systems.

2.1 A simple star-pattern

Graph-patterns can be valuated by polylogical truth-values delivering the polycon-

textural semantic matrix of the pattern.

val (graph) — sem [matrix]

val : {Ti, F,ie N} — [semantic — matrix] — [syntax — pattern

Diagramm 2 star-pattern without mediating sub-systems
S3 T3 R T,0 O
R P E—— 1!)
s1 I - 31 _ - ; F, T, T,
T1—> ’
- ~ rs ~ <, FZ, %]
s . \
A ~ T2 F2 g’ g’ F3
Proemality of (Sl, S2, S3):
crossing of ((S1, S2),(S3)) T 0 O ET.T
V\‘. th: l'l bl 11 2! 3
ord(Ti,Fi), i=1,2,3 N F, T, T, _ T,9 9
cross(ex_ch(Fl, T2),ex_ch(F1, T3)) 1 &, F, o o, F, o
cross(coi nc(T1, T2), coi nc(T1, T3)) 2 2
cross(coi nc(F1, F2), coi nc(F1, F3)) o, &, F, o, 9, F,
The above semantic interpretation of the T,9 © T,9 9
star-patte_rns allows _to define stralght for- FE.T.T o E, o
ward logical operations based on it. N, A 2
As an example the negations N1, N2 o, F, g F, T, T,
anq N3 are introduced to explain the no- o, o, F, 2, o, F,
tational approach to star-patterns.
. n T,9 9 T,9 9,
Negation system for PG,¥):
F. T, T, o, g, F,
Ay = N, N3 N3 =
Neg (PG) = [NI N, N8] o, F, o o, F, @
Negation cycles: o, o, F, F.T, T,

NL (N2 (N3)) =N8 (N2 (NL))

In contrast to linear negational systems
star-systems have no direct commutative
cycles, like N1(N3)=N3(N1).

Gerhard Thomas: http://math.unipa.it/
~circmat/indice_11_1985.htm

4
Ti" erzeugt den Permutographen PGL':

© Rudolf Kaehr Februar 16, 2006 9/8/05

DRAFT DERRIDA'S MACHINES

http://math.unipa.it/

2.2 A simple star-line-pattern
The following example shows a crossing of two proemial relations.

Diagramm 3 Star-line pattern without mediating sub-systems

_ 13— »F3
-7 3 - T.9 92,0
- ~
L ——>»F1_~ F, T,T, 9
=~ ~
S th - o, F, 2T,
= . ~
~ ¢ ~ _ J, I, F3, 6]
T~T4 —— »F4 @, 2,9, F,
Crossing of two linear proemial relations:
1.9 9 9 FT1,T, 9 cross(PR(SL, S3),PR(SL, S2, $4))
wth:
F,T,T,, 2 T,9, 99| |ord(Ti, Fi), i=123,4
N ‘'l F. T |= |loF. o cross(exch(T3, F1), exch(F1, T2))
! 2 4 s cross(coi nc(T1, T2, T4), coi nc(T1, T3)
2, o, F,, @ 2,9, F, T, cross(coi nc(F1, F2, F4), coi nc(F1, F3))
@, @, 3, F, @, &, 2, F,
Non-linear mediated polylogics can
be linked to m-categories and the re-
1,9 99 T,9 9 9 lational semantics of modal logics for
further explanation and formaliza-
F,T,T., o o, F, 2 T . .
o2 e 2T 4 tion. On the other hand it may turn
N, &, F,a T,|= |F, T, T, | | outthat non-linear, tabular polylogics
& o F. o & & FE.o can serve as logical foundations of n-
bl 1 31 ’ ’ 31 - -
categories (Tom Henster) which
9, 2, @, F, 9, 2, 2, F, shouldn’t be based on predicate logic
only.
T. 2 0 o T. 2 0 o On the b_ase of the given sema_ntlc in-
1 1 terpretation of the graphs all kinds of
F.T,T,, 9 o, o, F, @ Birkhoff arithmetics are accessible
N ‘lgF. T |l= o E T now to a polylogical interpretation.
3 2 4 2 4 More information can be found in the
9, 2, F, @ F. T, T, 9 chapter "Combinatorics". This "m-
@, &, 2, F, @, @, 2, F, categorial" approach is supporting
the proposed tabular and textual
strategies of ConTeXtures. Only for
1,9 9 9 T,9 9 9 the elementary case of m=3, star and
FT.T.o FT.T.o I|_ne structures are_co_mmdmg. This
o2t s o2t s simple structural coincidence may be
N, |1o,F,9o T, = |9 9 9 F, the hidden reason of profound episte-
>, o, F, o @, o, F, o mological controversies in philoso-
3 3 phy and sociology.
@, @, 2, F, o, F, 2T,
© Rudolf Kaehr Februar 16, 2006 ~ 9/8/05 DRAFT DERRIDA‘S MACHINES 10

2.3 Distributed cyclic patterns
Double interpretations

The following example deals with conflicts of modeling the exchange relation. As a
result two different, partly incomplete interpretations have to be accepted.

Diagramm 4 Double interpretations

T2 > F2\T5 F5
1 —» F1

3 — »F3
T4—» FA(F5 T5)T6 —» F6

Between F1T2T3 and F3T3, F4T6 proper exchange relations are realized.

This unambiguous situation of mediation is disturbed for (F2T5, F4F5) and (F2F5,
FATS5). Both interpretations are correct in realizing one exchange and one coincidence
relation, thus both have to be considered.

Cyclic patterns

Cyclic patterns are of special interest because they introduce some kind of circularity
into the structure of architectonics which is independent to the circularity, say, of self-
referential sentences on a linguistic level of logics. Again, only elementary examples
can be given here and full-fledged theory of the general dynamics of architectonics has
to be developed elsewhere.

Diagramm 5 Left and right cycles, a flag and its semantics

TIF2 —» F174 F1IT2 «— T1F4 F1T2 «— T1F4

T

T2F3 «— T3F4 Fszl_, T4F3 F2T3 — »T4F3
5 —— F5

F.T, 9 0 9
Tl, Fz’ o, O T1’ o, O, F4 T1’ 2, O, F4’ 1%}
F.2 9T, F. T, 9 9 o, F,T,2 0
2,2, T, F, o, F, T, & 2, o, F,T,T,
O, Tz’ Fs’ %] o, O, Fs'T4 o, 3, 3, @, F5

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

11

2.4 Birkhoff Arithmetics of Chiasms

Birkhoff arithmetics are used as skeletal structures of the dynamics of composed
polylogical systems. As mentioned above, the dynamic aspect of architectonics,
general dynamics of architectonics, are not considered for further development of

polylogics.

Diagramm 6

Ordinal sum of X and Y

val(X) =
T,T

1 "2

F,o

ll

2, F

N\
K e \l,a/
AY

val(X +Y) =
T.T,|2 2 0, 0 0
val() = F.o|T,, 2|9, 0 o

FloT,
T, 2, 2 @, F, |2, o, O, &
@, o,F,, F AT, 2, @
F.T, T

2" 3 @, 2,9, |k, T, T,
o, F, & o, 0, @, 2,|2, F, o
2, o, F, 2, 2, 0, 0|2 oF

How are formal systems of different architectonics interacting and reflecting

each other?

B. Lambda Calculi in Polycontextural
Situations

From Lambda to Samba’s

Goal: Church's lambda-calculus provides a convenient way of representing meanings,
whether meanings of programs or of expressions in English or some other natural language.
As a result, it is ubiquitous in computer science, logic, and formal approaches to the seman-
tics of natural language.

The lambda-calculus consists of two things: a formal language and an associated notion of
REDUCTION (roughly equivalent to "computation™). In the context of the lambda calculus,
reduction is specifically called lambda-reduction.
http://ling.ucsd.edu/~barker/Lambda/#lambdareduction

Paraphrase: The proposed ideas and constructions of "lambda calculi in polycon-
textural situations", or short: poly-Lambda Calculus, aims the possibility to provide con-
venient ways of representing and calculating ambiguous and complex meanings,
especially for common sense thinking and complex computations. Because in computer
science, mathematical linguistics and logics basic ambiguous terms are disallowed by
the principle of disambiguation the ideas of poly-Lambda Calculi are not yet perceived
seriously.

The proposed poly-Lambda Calculi consist of complex, i.e., distributed and mediat-
ed, formal languages and associated notions of REDUCTION and METAMORPHOSIS
(roughly similar to trans-computations). In the polycontextural game of disseminated
Lambda Calculi, reductions are specifically called poly-lambda-reductions and meta-
morphic transformations poly-lambda-metamorphosis. Additional to computational re-
ductions, disseminated lambda calculi are involved in interactional and reflectional
activities depending on their societal architectonics.

Lambda Calculus, Combinatory Logic and Category Theory are structurally very
close. Dissemination and proemiality of them evokes to consider n-category and poly-
mathematics as scientific metaphors and source of techniques to study polycontextural
formalisms.

Poly-Lambda Calculi starts with the simple idea that complexity is first, simplicity is
last. Following the Chinese model of scripturality. But this is not a simple duality of the
same. Scientific thinking as invented and promoted by Leibniz is based on a stroke,
one and only one, and the identity principle for the linear repetition of the stroke. And
its absence as non-stroke. Arithmetically interpreted as one and zero. A stroke is a
stroke. In Chinese writing, and as developed in poly-contextural formalisms, a contex-
ture gives place to strokes, is placing strokes and strokes in their motion are enabling
contextures. Strokes are written, painted, inscribed, they are not in the mind, they are
in the world, unclosing the horizons of the world. These patterns are called morpho-
grams. Lambda Calculi in polycontextural systems are situated, they occur in situations,
situs, placed in scriptural contextures. Their meaning has to be interpreted, negotiated.

Svend Ostergaard argues that “the stroke...is pure presentation...The stroke is ‘marked’ by
the incidental since the stroke results from an act that selects within endless possibilities...The
stroke... a ‘cut’ in a continuum...”

http://www .stefanarteni.net/writings/Polycontexturality/Polycontexturality.html

In contrast to the lambda calculus and its scriptural linearity and atomicity of its marks
— finite linear sequences of abstract symbols from its alphabet—, disseminated calculi
are written in a tabular complexity playing with ambiguous and paradox inscriptions.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

13

http://ling.ucsd.edu/~barker/Lambda/#lambdareduction
http://www.stefanarteni.net/writings/Polycontexturality/Polycontexturality.html

1 Remembering the beginnings

A SET OF POSTULATES FOR THE FOUNDATION
OF LOGIC.!

By Avonzo CHURCH

1. Introduction. In this paper we present a set of postulates for the
foundation of formal logic, in which we avoid use of the free, or real,
variable, and in which we introduce a certain restriction on the law of
excluded middle as a means of avoiding the paradoxes connected with the
mathematics of the transfinite.

In consequence of this abstraet character of the system which we are
about te formulate, it is mot admissible, in proving theorems of the system,
to make use of the meaning of any of the symbols, although in the appli-
eation which is intended the symbols do acguire meanings. The initial
get of postulates must of themselves define the system as a formal strue-
ture, and in developing this formal structure reference to the proposed
application must be held irrelevant. There may, indeed, be other appli-
cations of the system than its use as a logie,

From: Alonzo Church, Annals of Mathematics, ser. 2, vol. 33, (1932); in: Philip Wadler.

From foundational studies to main model of
a-t iy computation

§ Today it is easy forgotten that the leading motiva-
tions behind the lambda calculus, but also behind
its equivalents, like combinatory logic, Turing ma-
chines, and many other formalisms, was to build
an absolute foundation of security for mathematics,
excluding the appearance of catastrophic para-
doxes and antinomies. This aim failed. But interest-
ing insights and techniques into the nature of
formalisms, calculus, logic and computation, had
been developed and are today everywhere in use.
The main strategy to achieve this goal of ultimate
foundation was reduction of complexity, as far as
possible. This would exclude all kinds of ambiguity,
meaning related interpretations, not written on pa-
per. Surprisingly enough, the result of these enor-
mous stringent conceptualizations and formalizations was that there is no such
thing as an absolute security in the fundaments (Entscheidungsproblem/Hilbert).
One of the last ideology of scientific reasoning was unmasked. The strict calculus
of marks unmasked the mask of mathematics. As Joseph Goguen pointed out, that
facing the enormous complexity of different approaches, methods, trends, styles,
etc., today, nobody beliefs that there should or could be something like a general
ground to secure uniqueness of mathematical and computational thinking.

"In der urspriinglichen Absicht der Begriinder (Schonfinkel, Curry und Church) lag nicht
nur eine Axiomatisierung des Anwendungsbegriffes fur allgemeine Funktionen, sondern
eine funktionale Begriindung der gesamten Logik und Mathematik tiberhaupt. Insbesondere
Curry und Church haben urspriinglich Systeme aufgestellt, die mit durchaus verniinftig er-
scheinenden Zusatzen zur kombinatorischen Algebra auch logische Gesetze und Teile der
Mathematik miteinbezogen. Diese erweiterten Systeme stellten sich dann als widerspruchs-
voll heraus." Engeler, Metamatematik der Elementar-Mathematik, Springer 1983, p. 104

2 Sketch of the Lambda Calculus Essentials

2.1 Assembling the elements

The operator terminology of the lambda calculus gives us also a hint how to build a
poly-lambda calculus as the mathematical conception and apparatus behind the pro-
gramming language ARS and its distribution and mediation to the polycontextural no-
tion of ConTextures as poly-ARS.

Lambda calculus as a rewrite system: Barendregt’s intro
"A functional program consists of an expression E (representing both the algorithm and the
input). This expression E is subject to some rewrite rules. Reduction consists of replacing a
part P of E by another expression P’ according to the given rewrite rules.
In schematic notation E[P] —> E[P’], provided that P —> P’ is according to the rules.
This process of reduction will be repeated until the resulting expression has no more parts
that can be rewritten. This so called normal form E* of the expression E consists of the output
of the functional program." Barendregt, p.8
"Nothing happens until
Syntax a lambda-binding form

occurs in construction
XxeV = xel with an argument, thus:

M,N A = (MN) cA ((Iambdtz);l var body)
argument).
MeA xeV = ()\XM) cA Once a lambda-based
{ . } binding form occurs with
Vo=, vive.. an argument like this, it is
. ible to reduce the ex-
Set ot free variables of M : FV (M) z?f,z'sioen (:éeau;i]pfef_)f.
Fv (x) = {x} Barker
FV (M,N)=Fv(M)uFVv (N) "The lambda calculus is
a computational system
FV ()\XM) =FV (M) - {X} composed of

(1) a term algebra,

M is a closed A\ —term (lambdaerms; apply:

if EV (M) — lambda-abstractions);
(2) a description of the
Substitution, reduction steps making

. up computations; (3) a

N for free occurence of x in M, M [x = N] description of the mean-
. N ing of terms.”

X [X T N] =N; W.Richard Stark

ylx:=N]=y, if x=y; .
It seems, for linguistic

(Mle)[X =N] = (Ml x:=N])(Mz [x := N]); and philosophic rea-

sons, to be more ap-

()\X.Ml))\x[x = N] = Ay.(Ml[x = N]) propriate and also

more suggestive to

name "variable" as "name", thus: ((lambda name body) argument). This corresponds

to the understanding of abstraction as to give a name. And a name, obviously, is iden-

tifying and re-presenting the named or referred object, hiding all details of the named.
To run the scripture of the calculus technical marks, like brackets are included.

(cf. WEB: Chris Hankin, Introduction to Lambda Calculus, autum 2003, and Henk

Barendregt/Erik Barendson, Introduction to Lambda Calculus, 1994)

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

15

Definition of the Lambda Calculus

(i) Principle Axiom

(MMIN =Mx:=N] (3)

for all M, N € A

(ii) Logical rules

Equality : M =M

M=N=N=M

M =N, N=L=M=0L.

Compatibility : M =M'= MZ =M'Z
M=M=2ZM =ZM"
M=M= XM=MM" (¢

(i) If M = N is provable in the X\ —calculus, then
we sometimes write A — M = N.

(iv) M = Ay.M [x = y], y ¢ M (a).

Some wordings
"The beta-reduction says that lambda-variables may be replaced by their arguments.
A computation is a series of terms t0 —> t1 —>...—> ti—> tj,... such that each ti reduces
to ti+1." W.Richard Stark

"An expression may occur in three positions as a component of a larger expression:
1. in the operator position,
2. in the operand position,
3. as the body of another lambda expression.
The lambda expression is the second basic method of assembling a new expression.
In their most austere form the expression under consideration may be characterized as
follows.
An expression is
either simple and is an identifier
or a lambda expression
and has a bound variable which is an identifier
and a body which is an expression,
or it is composite
and has an operator and an operand, both of which are expressions.
A rule is needed for recognizing when the body of a lambda expression ends. The rule
is that the body extends as far as it can until it is terminated by a closing bracket, com-
ma, or the end of the whole expression. It follows that parenthesis are only needed to
enclose the body if it is a list although they may be used if this improves readability."
W.H. Burge, Recursive Programming Techniques, 1975, p. 9

Variables are identifying identitive objects, objects or operands which are simple
and identified by a simple identification. Thus, such objects are the abstract objects,
which had been called by Haskell Curry "obs" in the context of his combinatory logic.
Abstractions and applications, operators and operands, are defined over these ab-
stract objects "obs", they inherit their principle of identity. From the linguistics of the
lambda calculus, the term-terminology is preferred to the abstract entity-terminology of
"obs".

Diagramm 7

abstraction expression operator contexture
variable }ramd
application operation
1 1

The idea of disseminating lambda calculi in polycontextural situations is by no way
to challenge those results of foundational studies and applications to computer science.

Uniqueness and identity
Because of the uniqueness of the lambda calculus its operations are always in the
super-operator modus of identity, i.e., [id]. Thus the lambda calculus is a morphism of
the form: [id]: LC —> LC. Because this identity is ubiquitous for LC, it can be neglected;
it’s trivial. Things are changing dramatically if we have to deal with a multitude of me-
diated lambda calculi.

Lambda calculus vs. Actor model
The lambda calculus of Alonzo Church can be viewed as the earliest message passing pro-
gramming language. For example the lambda expression below implements a tree data
structure when supplied with parameters for a leftSubTree and rightSubTree. When such a
tree is given a parameter message "getlLeft", it returns leftSubTree and likewise when given
the message "getRight" it returns rightSubTree.

lambda...(leftSubTree,rightSubTree)
lambda...(message)
if (message == "getleft") then leftSubTree
else if (message == "getRight") then rightSubTree

However, the semantics of the lambda calculus were expressed using variable substitution
in which the values of parameters were substituted into the body of an invoked lambda ex-
pression. The substitution model is unsuitable for concurrency because it does not allow the
capability of sharing of changing resources. Inspired by the lambda calculus, the interpreter
for the programming language Lisp made use of a data structure called an environment so
that the values of parameters did not have to be substituted into the body of an invoked
lambda expression. This allowed for sharing of the effects of updating shared data struc-
tures but did not provide for concurrency.
http://en.wikipedia.org/wiki/Actor_model

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

17

http://en.wikipedia.org/wiki/Actor_model

2.2 Reductions vs. abstraction rules

The inverse or dual rules to the reduction rules are the abstraction rules.
"Reversing beta-reduction produces beta-abstraction rule.” Kenneth Slonneger,
Formal syntax and semantics for programming languages, 85, p.149, 1995

(xM)N = M [x:
(OXM)N < M [x:
(OxM)N & Mlx:
for all M, N € A.

N] (ﬁ - reduction)
N (ﬁ - abstraction)
N (B —conversion)

Syntax of Lambda Exprexssions

1.t =x, x eVar : variable : operands
2.t = XM, x and M are exp ressions : abstraction : operator
3.t= (MN), M, N exp ressions - application : operation

(6 — Reduction Rules.
a. (xu)t = u [t / x]
b. <t,u> =1t
c.<t,u> =u
plus"logical rules" for " ="
another notation for a:
(XM)N ———M [x N

Lambda calculus BNF syntax

{\ term) 1=

< variable > | < abstraction > | <application >
<variable > :=v'*

< abstraction >:= (\ < variable > < \ term >)
< application >:= (< term > <\ term >)

Or:

variable=reference,

application=synthesis,

abstraction=abstraction in the sense of ARS

(not considering intrinsic differences between ARS and the Lambda Calculus.)

http://scom.hud.ac.uk/scomhro/Courses/SlideShows/CHA2545/Lectures/
Lectured4/

http://scom.hud.ac.uk/scomhro/Courses/SlideShows/CHA2545/Lectures/

Summary of the reduction rules (Barendregt, 1994)

4.1. DEFINITION. (i) A binary relation R on A is called compatible (with the
operations) if

MRN = (ZM)R (ZN),
(MZ) R(NZ) and
(Az.M) R (Az.N).

(ii) A congruence relation on A is a compatible equivalence relation.
(iii) A reduction relation on A is a compatible, reflexive and transitive rela-
tion.

4.2. DEFINITION. The binary relations —4, —#5 and =g on A are defined in-
ductively as follows.
(i) 1. (M&.M)N —3 M[z := NJ;
M—=gN = ZM =3 ZN, MZ =3 NZ and Az.M —3 Az.N.
M —»5 M;
M—gN = M —»5 N;
M—»ﬁN,N—»ﬁL = M—»ﬁL.

(ii)

e

(i) 1. M-»gN = M=N;
2. M=3N = N=4M;
3. M=gN,N=5L = M =4L.

These relations are pronounced as follows.

M —3 N : MpB-reduces to N;
M =g N : Mp-reduces to Nin one step;
M=gN : M is 3-convertible to N.

By definition —4 is compatible, —#4 is a reduction relation and =4 is a con-
gruence relation.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

2.3 Church-Rosser-Theorem

The Church-Rosser Theorem says that if two terms are convertible in the lambda cal-
culus, then there is a term to which they both reduce.

4.9. CHURCH-ROSSER THEOREM. If M —»3 Ny, M —3 Ny, then for some Ny
one has Ny =3 N3 and No —#5 N3; in diagram

N3
In fact, when a form contains more than one lambda that can be reduced, it does
not matter which one is reduced first, the result will be the same. This is known as the
Church-Rosser property, or, informally, as the diamond property. Barker
An example
(Oxx +x)Oyy +y)1)
xx+x)1+1) (Oyy+2)1) + (Oyy +1)1)

\ /

(1+1)+(1+12)

Another example
The reduction rules of the lambda calcu-

()\X.X ((Ay.y) X)) (\z.z) lus are dictating the strategy of reduction.

/ \ There is some degree of freedom in the
succession of the reduction steps. But if

(Az.z ((Ay.y)x)()\z.z)) ()\x.x)(/\z.z) there is a normal form of the expression
at all, the reduction steps results in the

| \ / same one and only one normal form. The
(Ay.y)()\z.z) (Az.z)()\z.z) normal forms are terminal objects to the
\ / initial objects of the axioms of the calcu-

lus. This reduction to normal forms is prov-

(Az.z) en with the Church-Rosser Theorem. For

modern proof details (cf. Barendregt).

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 20

2.4 Connecting the lambda calculus to the rest of the formal world

2.4.1 Connecting to Logic

The AND function of two arguments can be defined as

A = Azy.xy(Auv.v) = Axy.xyF
The OR function of two arguments can be defined as

V= Azy.x(Auv.a)y = Axy.aTy
Negation of one argument can be defined as

- = Az.z(Auv.v)(Aab.a) = dx.xFT

The negation function applied to “true” is

=T = Az.z(Auv.v)(Aab.a)(Aed.c)

2.4.2 Connecting to Numbers
The lambda calculus is dealing

é = isi EE:’:'EZ) y with functions. Thus, natural num-
3 .)\.ZZ) - (: C=C=))) bers have to be interpreted as func-

T o tions. This kind of numbers are
S = Awyx.y(wyx) called Church Numerals.

http://www.rbjones.com/rbjpub/

logic/cl/cl017.htm
http://ling.ucsd.edu/~barker/Lambda/#lambdareduction

Understanding eqations

Any interesting equation is really a summary of
an interesting process. For example:

2+ 3
[
5}

is short for:
2 \ / 3
v 5 v

zr

x

From platonist to constructivist and to constructionist understanding of an equation?

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

21

http://www.rbjones.com/rbjpub/
http://ling.ucsd.edu/~barker/Lambda/#lambdareduction

2.5 Combinators

"Lambda-reduction is a complicated

Combinators K=<tu> syntactic transformation whose com-
| [E[AXX 0 plete and explicit description is quite

K. = <t,u> complex, and whose execution is full
K=Axy.X f subtle pitfalls that catch even experi-

S = xxyzxz(yz) °© pitiars - /en exp
K. E@Axyy enced semanticists. You might think,

true = K therefore, that the popularity of the
Sz .xyzxz(yz) false = K lambda-calculus is due to there being
W =[A fx. fxx T no simpler alternative.

But you would be wrong. Combinatory
Logic (CL), invented by Moses Schon-

finkel and developed by Haskell Curry and others in the 1920's (note: before the lamb-
da-calculus!), is equivalent in expressive power to the lambda calculus, but much

simpler."

http://ling.ucsd.edu/~barker/Lambda/ski.html

But if you would think, that the combinatory logic is
the simplest possible calculus, you would be wrong
again. And the winner, until now, is: Barker, with his
lota-calculus. See for a competition at:

http://ling.ucsd.edu/~barker/lota/
http://www.thinkartlab.com/pkl/media/

SUSHIS_LOGICS.pdf

The Y combinator

The formulation of the Y operator in combinatory
logic shows very neatly and explicit the character of
the involved kind of iterability. Below is the classic for-
mulation of Curry and Feys 1958. An interesting anal-

ysis of this formulation can be found at Fitch 1960.

Combinatory definition of Y

Y f = (W(BO))(W(BD))
(TR (WS(BWB) f

Proof of Y in Combinatory Logic

Proof [of [Y f ZF (Y f):

Y f =[WS(BWB) f

(I [S(BWB) ff

(ITE: (BWB f (IBWBLT)
(= (W (B f)(BWBLT)
(T (B f (BWBLT)(BWBIT)
MIE-CF (Y)

"The combinator W, when applied to a func-
tion f of two arguments, produces the function
of one argument obtained by identifying the
two arguments.” W.H. Burge

http://ling.ucsd.edu/~barker/Lambda/ski.html
http://ling.ucsd.edu/~barker/Iota/
http://www.thinkartlab.com/pkl/media/

2.6 Fixed-point theorem: the Y-operator
"A fixed point combinator is a higher-order function which computes fixed points of other
functions. A fixed point of a function on values is another value which is left unchanged by
that function; for example, O and 1 are fixed points of the squaring function. Formally, a
value x is a fixed point of a function f if f(x) = x.
Fixed point combinators on the other hand are functions on functions. The fix point of a func-
tion is another function that is left unchanged by further applications of the fix point combi-
nator."
http://en.wikipedia.org/wiki/Fixed_point_combinator

Also the lambda calculus is per se not recursive it is possible to define fixed point
functions in terms of non-recursive lambda abstractions. The Y-operator, introduced as
a combinator by Haskell Curry, is a famous example of a fixed point operator, also
called paradoxial operator. Applied to logic it produces paradoxes. The Y-operator is
of importance to define recursive functions and other self-referential applications in the
framework of the lambda calculus and its application to programming languages. Y is
a second-order function constructed by lambda-f of lambda-x-of-f-of-x.

FIXEDPOINT THEOREM . . ' .
Every recursively defined function can

(i) VF I3X FX = X. be seen as a fixed point of some other
. suitable function, and therefore, using
(ii) There is a fixed point combinator Y, every recursively defined function

Y = M. ()\X. f (x X>> ()\X_ f <X X)) can be expressed as a lambda expres-

sion. In particular, we can now cleanly

such that define the subtraction, multiplication

VE E (Y F) ~YE. and comparison predicate of natural
numbers recursively."

Thus, the connection between the lambda calculus and recursive number theory is
established. As a result we will have the theorem "All recursive functions are lambda-
definable.” And with that, we have a general model or explication of computability.

Proof. (i) Define W = A.F (xx)and X =WW. Then
X =WW = XF (xx)W = FWw) = F X.
(ii) By the proof of (i). (Barendregt)

Y = (Af.()\x.f (xx))()\x.f (xx))
YF = ()\f.(/\x.f (x x))(/\x.f (x x)))F
= (Ax.F(xx))(Ax.F(xx)
= F()\X.F (x x))(/\x.F(x x))

= F(YF).

The re-entry of "f(x, x)" into "l x. f(x, X)" is
producing an endless loop.

http://en.wikipedia.org/wiki/Lambda_calculus
http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/
Formal_Organization_of Knowledge/Examples/combinator_calculus/

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

23

http://en.wikipedia.org/wiki/Fixed_point_combinator
http://en.wikipedia.org/wiki/Lambda_calculus
http://people.cs.uchicago.edu/~odonnell/Teacher/Lectures/

3 Main results

Logic
The Curry-Howard isomorphism implies a relationship between logic and programming: Ev-
ery valid proof of a theorem of logic corresponds directly to a reduction of a lambda term,
and vice versa. Theorems themselves are identified with function type signatures. Specifical-
ly, typed combinatory logics correspond to Hilbert systems in proof theory.

Undecidability of equivalence
There is no algorithm which takes as input two lambda expressions and outputs TRUE or
FALSE depending on whether or not the two expressions are equivalent. This was historically
the first problem for which the unsolvability could be proven. Of course, in order to do so,
the notion of algorithm has to be cleanly defined; Church used a definition via recursive
functions, which is now known to be equivalent to all other reasonable definitions of the
notion.

Church's proof first reduces the problem to determining whether a given lambda expression
has a normal form. A normal form is an equivalent expression which cannot be reduced
any further. Then he assumes that this predicate is computable, and can hence be expressed
in lambda calculus.

http://en.wikipedia.org/wiki/Lambda_calculus

The whole history together

Inge Bethke, Commented bibliography of the lambda calculus,1999, 587pp.
http://a9.com/?q=abramski+mccusker+1999&sourceid=mozilla-search

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

http://en.wikipedia.org/wiki/Lambda_calculus
http://a9.com/?q=abramski+mccusker+1999&sourceid=mozilla-search

4 General framework for Lambda Calculi in Contextures

The general framework of
poly-Lambda Calculus is very ~ConTeXtures
similar to the general frame- ()
work of ConTextures. This is ob- | X€teh — horizon

vious, because ConTeXtures are | [build — architectonics
based on ARS-systems, which] . .
are themselves a generalized thematize - scenarios
interpretation of the Lambda [choose—styles
Calculus. i .
It is not the aim of this intro- functional (I
duction of the idea and some imperative
formalism of a poly-Lambda . .
Calculus to repeat the argu- object - oriented
ments of and strategies of Con- logical
TeXtures. To understand the
whole manoeuvre | recommend ~contextural
to read together the texts on select —topics
PolyLogics, ConTeXtures and -
this one on poly-Lambda Calcu- Boolean
li. In German there is a well numeric
elaborated "Strukturationen der)
Interaktivitat” to read, too. symbolic
Architectonics class o
Architectonics in polycontex- relational
tural systems are, metaphorical- .
ly, describing and re- reflectional
constructing the different types actional [J
of Chinese writings, glyphs and g .
morphograms. From linear chi- identify — contextures
asms to highly complex interwo- (deﬁ ne- operations \
ven ambiguous patterns. _
To learn about poly-Lambda (abgtract - function)
Calculi we follow step by step k[{propose— statements}}
to more complex writings, inter- 1L 1]

weaving step by step more con-
textures...
Thematization as as-abstraction

Abstraction as giving something a name is identifying something as something; it
should be called is-abstraction. In contrast, the as-abstraction is identifying something
as something else. That is, as-abstraction is thematizing something as something in a
specific context (situation, constellation, environment). As-abstraction, i.e., thematiza-
tion, is naming something as something and giving the context of its identification. The
context of identification is designed by the architectonics of polycontexturality. Abstrac-
tion as giving something a name is emphasizing the act of classification in contrast to
creation. As-abstraction is not naming something pre-given but evoking new creations.

as-abstraction = [evocation, contextualization]

is-abstraction = [identification, classification]

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

4.1 Lambda Calculi disseminated

Here too, the substitution abstraction has to be deliberated from the identity principle
to an abstraction in the mode of the as-category. Thus, the substitution can happen in
the mode of identity or in the mode of sameness. Identity happens if there is no sub-
system change and no simultaneous substitution into other sub-systems. The example
shows (more or less), how substitutions into different systems happens at once. That is,
S1to S1S2, and S2 to S2S3, and S3 to S3, according to the super-operators id (iden-
tity) and bif (bifurcation).

@ The Lambda Calculus as a formal theory of
samba substitution can be embedded into a grid
(bif, bif, id) of contextures. As a consequence we have

to study different sorts of substitutions— par-
S, : ()t U[t X] tial/total, homogen/heterogen—, from
\ . identive parallel to metamorphic bifurca-
: tional transformations (substitutions, reduc-
u [t X] tions, computations). All these different
\ . sorts of substitutions also have to be reflect-
: ed in the logical rules of equality (=) and
S, : (wu)t ——u [t x] proof theory in a new calculus.

51

S, : ()\x:u)t

B2

Ambiguity, first! (
Strictly m-contextural parallel total substitution ex- (
ample as a graphic, non-operable and not animat- ()\x
ed, metaphor. A Z' y
Iterability between iteration and alteration ()\Z.Z (Z()\ Y X)
To start with ambiguity is an option, there are no ()\Z.Z()\y_yg d 7)
ultimate and natural reasons for it; neither for its op- h\ 7 ?&)\ 2.2) Az.2
posite, the naturality of simplicity. The iterability of ()\y_y)y(K z S(Z z zz)
the distributed Ia_mbda calculi_ is defi_ned, ir_1 this ()\y.y)()\z.z) \<)\ZZ'/%§(/< _Z)
study, by a reflectional and an interactional dimen- E Z
sion of repeatability. The whole study is to under- \ /
stand as an exercise in a new paradigm of (\zz)
iterability, including iteration, repetition, alteration,
recursion, disremption, transformation, etc. Terms to be deconstruct and deliberated
from their logocentric linearity of scriptural iteration.
"Il 'y a pas de mot, ni en general de signe, qui ne soit construit par la possibilite de se
repeter. Un signe qui ne se repete pas, qui n"est pas deja divise par la repetition dans sa
premiere fois n"est pas un signe." Derrida
Derrida brought together in his concept of iterability, not only the stream of non-founded
events—-the mis en abym, but also the alterity of the "iter", the "alter".
Citation goes together, like translation, with jumps to different contextures, all organized by
their own and different rules and different origins. More technically, this procedure of cita-
tion is possible only in connection with the interplay of an identity and a neighbor function
of a mark.
The problematics are getting more virulent. Behind this generalized idea of iterability and
repeatability which is based on a generalized concept of signs and marks, there is some-
thing like the strict non-iterability of the non-signs and non-marks, the kenograms.

DERRIDA’S MACHINES
http://www.thinkartlab.com/pkl/media/ DERRIDA/Iterability of Zero.html

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

26

http://www.thinkartlab.com/pkl/media/

4.2 ARS, ConTeXtures and Lambda Calculi

In the same sense as ARS (a proto-programming language based on lambda calcu-
lus) systems can be mapped onto the polycontextural matrix, especially onto reflection-
al and interactional dimensions, Lambda Calculi can be distributed and mediated. The
template of construction will be more or less the same as it is developed here for Con-
TeXtures. That is, the construction of mediation and the rules of transformation by super-
operators, like identity, permutation, reduction and bifurcations, will appear again.

ARS-syntax Operator-terminology

<expression> ::= linguistic ARS-contexture ::=
<abstraction> | <reference> | <synthesis> <operator> | <operand> | <operation>

<abstraction> ::= <operator> ::=

'(" define <variable> <expression> ")’ | operator of operator (operator as operator)
'(lambda (’ {<variable>}’)" | operator of operand (operator as operand)
<expression> { <expressions> }')’ operator of operation (operator as operation)
<reference> ::= <variable> <operand> ::= programming operand
<variable> 1= <symbol> <operand> ::= lingustic operand
<synthesis> : = <operation> ::=

(" <expression> { <expression> }’)’ operator (operation)

The operator terminology of the lambda calculus gives us also a hint how to build up
a poly-lambda calculus as the mathematical conception and apparatus behind the pro-
gramming language ARS and its distribution and mediation to the polycontextural no-
tion of ConTeXtures as poly-ARS.

In the same sense as ARS systems can
be mapped onto the polycontextural
matrix, especially onto reflectional
operand and interactional dimensions, Lambda
Calculi can be distributed and mediat-
ed. The templates of construction will
i v be more or less the same as it is devel-
oped for ConTeXtures. That is, the con-
struction of mediation and the rules of
transformation by super-operators, like identity, permutation, reduction, replication and
bifurcations, will appear again.

operator operator

operation *— operation

"Reduction consists of replacing a part P of E by

st-p [E] - P [E '] another expression P’ according to the given re-
2. [] [.] write rules. In schematic notation E[P] —> E[P’],
ST PIEI—PIE provided that P —> P’ is according to the rules.”

g3 p [E] P [E] Barendregt, p.8

This kind of rewrite system is distributed over
3 places, including one mediating system S3. It is mediated as an operator/operand
chain realizing the conditions of the proemial relationship, which are the order, ex-
change and coincidence relations over the operator/operand distinction and 3 con-
textural loci.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

27

4.3 Free and bound in contextures

The distinction of free and bound variables is itself bound or embedded into/by con-
textures. A free variable is "bound" by its contexture. The syntactical distinction of free
and bound variables is an intra-contextural distinction. Contextures are binding the
boundness of intra-contextural distinctions. Free variables are bound by contextures.

The boundness and closure notion has to be distributed over the openness of different
contextures. The purpose of the lambda calculus was to formalize the use of functions
in a non ambiguous way. To avoid paradoxes and to give a formal explication of the
notion of computability. That is, to give a formal model of the vague notion of algo-
rithm. Maybe, the purpose of poly-lambda calculi is to formalize the use of reflection-
ality and interactivity between distributed formal systems. To domesticate different
kinds of self-referential constructions and to give a formal explication of the notion of
complex and ambiguous computation as a step to a formal theory of living systems.

All that will have far reaching consequences for further developments, say program-
ming languages, as started with ConTeXtures. As a beginning it seems obvious, that
there is some kind of an asymmetry between existing formalism and their applicability
to the real world in the sense of Wolfram’s Equivalence Thesis and the proposed poly-
contextural formalisms. This leads to the thesis that there is no such equivalence, say
for socio-biological and reflectional situations. And that, maybe, polycontexturality will
be more appropriate to develop a formal model for living beings than the known mono-
contextural approaches. Atrtificial life studies and the theory of living systems are focus-
sing on very different topics. Gunther’s "Life as Polycontexturality” gives us a first hint.

"Almost all processes that are not obviously simple can be viewed as computations of equiv-
alent sophistication (Wolfram 2002, pp. 5 and 716-717).

More specifically, the principle of computational equivalence says that systems found in the
natural world can perform computations up to a maximal (“universal”) level of computation-
al power, and that most systems do in fact attain this maximal level of computational power.
Consequently, most systems are computationally equivalent. For example, the workings of
the human brain or the evolution of weather systems can, in principle, compute the same
things as a computer. Computation is therefore simply a question of translating inputs and
outputs from one system to another."
http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html

4.4 Algebras and co-algebras

"The stroke... a ‘cut’ in a continuum...”

There is no final stroke... An ink stroke has a beginning and an end, and ones end
is the others beginning. No origin, but beginnings of beginnings and ends of ends...

Until now, Lambda Calculi are, from a systematic point of view, algebras (Engeler).
They are constructed out of axioms, rules and equations. They form a formal language
with its formal rules of reduction, deduction, computation. There is no continuum in the
architectonics of such algebras, they are strictly structural in the sense of the word.

The proposed poly-Lambda Calculi are intra-contexturally algebras, too. But they are
embedded in a "continuum™ of neighbor calculi. The structure of such a continuum of
calculi is not algebraic but co-algebraic. There is no first calculus, no initial object as
an ultimate and natural origin in a paradigmatic sense. Beginnings, and ends, are cho-
sen by decision. Thus, there is always a beginning and an end, in the realization of
concrete polycontextural situation and constellation. Thus, poly-Lambda Calculi are in-
troduced as an interplay of algebras and co-algebras, not necessarily based on cate-
gory theory but probably on n-categories and polycontexturality. See for first steps in
this direction at: http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

28

http://mathworld.wolfram.com/PrincipleofComputationalEquivalence.html
http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-medium.pdf

4.5 General Syntax for distributed lambda calculi
"1.1.1. Biases and loci. The basic analytical artifacts (designs) are located "somewhere".
We shall therefore build a system of locations." Jean-Yves Girard, Locus Solum
From locus solus to locus solum; a multitude of disseminated loci in contextural grids.

4.5.1 Tabular rewrite systems

We introduce tabular lambda calculi as a distribution of rewrite systems,

E[P] —> E[P’], over epistemic dimensions, here, reduced to two: the reflectional and
the interactional.

Matrix for a balanced 3-contextural reflectional/interactional rewrite system scheme.

PW” S S S

1 2 3

s, |[ElPl—EIP] EIPI=EIP] EIPI= EIP]

1

s, |ElPl=ElP] ElPI - EIP'] ElPI = EIP']

2

s. |ElPl=ElP] ElPI=EIP] ElPI - ElP']

3

The main computational rewrite systems are located at the diagonal: S;;, i=j, and
highlighted in red. These systems are mediated by the proemial relationship.

Paraphrase of Barendregt’s intro

A m-tabular functional programing constellation consists of m-expressions M (rep-
resenting both the complexion of algorithms and the corresponding output-systems).
Constellations are representing the architectonics and types of complexity of the medi-
ated lambda calculi. Mediated calculi are "chained" and "glued" by the proemial re-
lationship according to the underlying architectonics. These m-expression are subject,
intra-contexturally, to some rewrite rules, and object some trans-contextural transforma-
tions and displacements according to the super-operator rules of reflectionality and in-
teractionality. Reflectionality is displacing rewrite systems along the i-axis,
interactionality is interacting along the j-axis of the polycontextural matrix. Mediated
m-expressions can be dis-mediated by the application of the super-operators. Thus, we
distinguish between conservative and transformative rewrite rules.

Poly-reduction consists of replacing intra-contexturally a part P; of (M by another
equivalent expression P;;’ or trans-contexturally by an analogue expression Py ™ of
EM. Thus, a system can have a prolongation in itself, and prolongations into other,
neighboring places, along reflectional and interactional rules of prolongations.

This so called complexion of normal forms EM=* of the m-expression E(™ consists of
the output of the introduced (functional) programming constellation. A normal form
NF™ represents the end form of a complex reduction chain. But such a normal form
NF; ; can be shifted to another contexture, as NF |, without loosing its characteristics
as a NF. Such a shift can happen in both modi, reflective and interactive. Therefore,
normal forms are, in a strict sense, not necessarily terminal objects.

A singular computation can start at a computational locus M j, i=j, or at any other
place of the matrix. A primary computation at a diagonal place can become a second-
ary system in a transformed matrix as a result of the architectonic dynamics of the gen-
eral matrix. (Not considered in this paper.)

Computation can happen at once at different places of the matrix. A multitude of
computations can process strictly in parallel or in interwoven forms of interactions and
reflections.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

29

4.5.2 Reflection and interaction in the polycontextural Matrix
Super-operators are mappings between complex lambda calculi.
Super-operators sops

mappingSops :[(LC™ ——IL.C™ [

id(i,0):0¥i, j €s(m) :mmmmmiLC') 3—=>1iLC)
perm(i,§):t¥i, j €s(m):{LC"1C') 3—({LC’,LC')
red(i,§) :0¥i, j €s(m) :LC',[LC') B———[{LC',.C")

bif (i,§) Vi, j €s(m) :miLC', LC!) F—— L(J(LC' ILci),ac’)
repl (i,) :¥i, j €s(m):0fLC’ C!) 3———(f(LC | LC'),mC!)
sops(2 {id, [perm, Ted, bif , epl }

Two examples of iterated reflectional and interactional patterns in bracket and matrix
notation for balanced 3-contextural systems.

Bracket and matrix notation

(010203) (010203)
701 ' 101
(MIM2M 3 \ (M1IM2M 3
| mmmiG110) (M1
102 (M1 \
(G110)
({(GlOO \\ (G010) oM) J
|(Goo3)) 102
mmmmﬂezzz) (MIM2M3
03 | mmte222)) |
(MIM2M 3\ (03]
| mmtGos3)) (MIM2M3
. : | mmitGos3)) |
PM |O1 02 03 _ _ _ PM | O1 02 03
WIS S, 0 pemnese WIS S 0
M2|S S, S reflections. M21S,,;, S S
M3[§ S, S M3| @ S S

This bracket and matrix approach is widely developed in ConTeXtures.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

4.5.3 Tabular syntax

Full poly-Lambda Calculi are distributed over reflectional and interactional dimen-
sions, building the polycontextural matrix. Thus the syntax has to reflect this kind of 2-
dimensionality in a tabular syntactic structure. For short we can say, that tabular syn-
tactics are products of the pre-given classic syntax of lambda calculus modulo the rules
of mediation. Mediation is restricting the full range of combinatorial possibilities of
combining syntactical systems (formal languages).

poly — Lambda Calculus :=

[architectonics] [l [dissemination | [l [interactionality] Il [reflectionality]
[architectonics] := ((complexity)<structurati0n>)

[dissemination] := (<distribution><mediation><lambda calculus>)
[interactionality] = (<super —operators><>\ term>)

[reflectionality] = (<super —operators><>\ term>)

[

lambda calculus] = <)\ term>

Lambda calculi terms belong to the textuality, intra-textuality of the lambda calculus.
They are terms of the formal language of the lambda calculus.

Architectonics and dissemination are describing the trans-linguistic and inter-textual
properties and processes between different mediated lambda calculi, i.e., between dif-
ferent and discontexturally separated formal languages.

The classic lambda calculus is identical with 1-lambda calculus. The architectonics
and dissemination of a 1-calculus are reduced to simple uniqueness. Architectonics in
the classical lambda calculus is reduced to an unitarian tectonic, describing intra-tex-
tually the construction levels of its formal language. The meta-language of classical
lambda calculus is the universal common language, called U-language by Curry. Its
structure is mono-contextural. But it would be wrong to think that the meta-language or
proto-language of poly-lambda calculi is an U-language, also it would be misleading
to presuppose that it is itself mono-contextural.

This situation was discussed intensely in the past in the context of many-valued logics
and their interpretation in a meta-language, arising the endless debate about the two-
valuedness of the meta-language which would reduce the logico-philosophical rele-
vance of these many-valued logics.

Again, this study is under-

PM™ .= [reflectional, interactional] standing dissemination
Lc™ c pM¥ o restricted to the dimen-
(m) sion of interactionality

<)\ term> cpPm™ and reflectionality, ex-
(m) . 1 1 " cluding other behavioral
Synt o = diss [SynLC » SYN ¢Tr e SYN] dimensions like interven-

(m) tion and anticipation of a
refl,act Super—ops [Syn Lc Leﬂ,act general theory of ratio-
nality.

Syn(m)l_c : [Syn(m)Lc }

Some philosophical and logical reflections about formal systems in general, devel-
oped by Michael J. O’Donnell, involving Curry’s approach, can be found at:
http://arxiv.org/abs/cs/9911010

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 31

http://arxiv.org/abs/cs/9911010

4.5.4 Gerneral syntax of distribution

This general syntax of distributed lambda calculi is not yet very informative because
it is simply stating abstractly that the syntax is distributed over all loci of the polycon-
textural matrix. That is, at each locus we have to consider the rules of the syntax as we

know it from the classical case.

Set ot free variables of M™

vljes(): FvH (M')

FV (x) = {}

FV (M,N) = Fv (M)UFV (N)
FV()\XM): ()—{x}
Vi,jes(m):

M is a closed X' —term

if FVi (M) =g

Vi, j es(m):SynLCJ

XxeV = xeA

M,N €A = (MN) € A
MeA xeV = (M) e A
vV = {vvv}

This general syntax of distributed lambda cal-
culi is not yet very informative because it is sim-
ply demonstrating abstractly that the syntax is
distributed over all loci of the polycontextural
matrix. That is, at each locus we have to con-
sider the rules of the syntax as we know it from
the classical case.

This free abstract distribution of the full syntax
over all loci has to be restricted by the rules of
mediation. Second, the syntax itself appears
more complex with the application of the su-
per-operators, esp. with the interactional oper-
ators of bifurcations. The bracket inclosing
definitions says, that this package as a whole
is distributed over the reflectional and interac-
tional axis of the matrix, denoted simply with
the indices i,j. The bracket reflects some kind
of contextural closure of the distributed syntac-
tical systems. In another design of dissemina-
tion, additional dimensions could be
introduced, like intervention and anticipation.
The sets of the terms of different syntactical sys-

tems are not only disjunct but discontextural, belonging to different contextures.

Substitution™

vi,j €s(m): Subst"

x[x::N] = N;
y[x::N]zy, if x
(MM,)l :=NT = (M, [x =

local distribution :

Vi, j es(m):

Syntax™ — rules

N for free occurence of x in M, M [x = N]

(M) xx[x == NI = oy (M, [x:

syntactic|

Therefore, | have to use in
the meta-language some
kind of polycontextural
quantificators, all and ex-
ists, but also bifurcational
operators, like at once and
set theoretical operators, im-
plying that the meta-lan-

])(Mz[x :N]), guage itself is
polycontextural. The syntac-

=]) tic rules as a whole are dis-
seminated over the

polycontextural matrix. But
this distribution, reflecting
the local aspects only, is not
yet including the syntactic
properties of interaction

global interaction / reflection :

sops : Syntax'! ——— Syntax'!

and reflection.

To add more salt and pepper to the construction, consult Hankin and Barendregt.

© Rudolf Kaehr

Februar 16, 2006 9/16/05

DRAFT

DERRIDA'S MACHINES

32

4.5.5 General definition of m-lambda calculi

Definition of the m — Lambda Calculus
a. Intra — contextural rules

Vijes (m):

(i) Principle Axiom

(M)N =M x:=n] | ()

for all M, N € A.

(ii) Logical rules

M=M
Equality : M=N=N=M
M=N,N=L=M-=1L
M=M=MZ=M2Z |
Compatibility : [M = M"' = ZM = ZM"
M=M= XM = XM

ij

(€)

(iii) If M = N is provable in the A —calculus, then
we sometimes write A — M = N

(iv) {)\X.M = \y.M [x ::y], y & Mr (a).

b. Trans — contextural rules

[M = M]" as a complexion, not a simple identity.

Self-application and the selection and identification of contextures is not yet imple-
mented.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

4.5.6 Super-operators

As the general syntactic rules this definition of m-lambda calculi is not telling us much
about the trans-contextural rules which are yielding between different calculi. One step
to fill the gap is done by the super-operators which are operating as identity, replica-
tion, reduction, permutation and bifurcation between different distributed calculi.

Super-operators applied on lambda calculi and their syntax.

Syn(m)LC : {Syn <m)LC }reﬂ, act super —ops [Syn (m>LC }reﬂ, act
super —ops = {id, perm, red, bif, repl}
id: Vi,j es(m): (SynLC”) e —— (SynLC”)

perm (i, j): Vi,j es(m): (SynLC‘,SynLCJ> — (SynLCj,SynLC‘>
red (i, j): Vi, j es(m): (Syn ‘ SynLCj) - (SynLC‘,SynLC‘)

LCc ’ red

bif (i, j): vi,j es(m): (syn'.syn.t) —5— ((Syn' lisyn,c!). syn,!)

LC ’

repl (i, j): Vi,j es(m): (SynLC‘,SynLC") — ((SynLC‘ |SynLC‘), SynLCj)

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

34

4.6 Signatures for m-lambda calculi

A lambda term, object, entity belongs to a lambda calculus—or it doesn’t belong to
it. Then it is not a lambda term. In a situation of a multitude of calculi, a term which
doesn’t belong to a calculus, may belong to another one. To indicate this situation we
can use signed terms and formulas as introduced in the chapter "architectonics” and
in ConTeXtures. These signatures are not necessarily connected with logical meanings.
They can represent all kinds of framework related basic oppositions in formal systems,
like true/false, acceptance/rejection, opponent/proponent, antecedent/succedent,
marked/unmarked, etc.

4.6.1 Signhatures as locators

Signatures are a kind of place-holders, locators, not only for formulas but for formal

systems. They are positioning formal systems in the polycontextural grid.

Intra — contextural (Postulates :

Uniqueness

T, H,,0, K, B[{H,K,) ELC

H ELC E>MH, 2MH,

Symmetryland [(Transtivity[for [,

Composition

HY B2, HY B BIH HY)= (H2HY),
Extensionality

H. H2 €LC @ndYH® ELC, :
(HAH%)= (H2HE)= HY = H2.

V™ H™ H ™ e1L.C'™ [
T, H, [iff (H, €ELC

F H, [iff M, ¢LC Des(m)

H, $Lci|1ﬁ|]-|i+1ELCi+l

Intra-Extensionality:

This means that H, and H, are the same operator iff they always yield the same re-
sult when applied to an arbitrary entity Hs. This postulate yields intra-contexturally for
all positioned lambda calculi.

Othogonality for sameness

What is yet missing is an orthogonal extensionality postulate which yields between
terms of different calculi. That is a kind of a trans-contextural extensionality, not for
identity, but considering the sameness of terms.

Additional to the intra-contextural equality and comparability postulates for orthogo-
nal features of disseminated calculi have to be developed.

4.6.2 Signatures and Conditions of Mediation

Locators are placing terms in a complexion but they don’t rule the composition of the
complexion. Depending on the architectonics of the complex formal system combina-
tions have to realize the condition of mediation defined by the architectonics. Thus, not
all formal combinations are accepted to build a complexion.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

4.7 Lambda calculi as trees

Syntactic systems have representations as trees. The root of the tree marks, addition-
ally to its function as the root of the following branches, the location of the tree in the
grid. This location is marked by a signature, which makes the tree a signed tree. This
fully in the sense of Smullyan’s approach to logics, but not for trees only but for forests
and rhizomes of trees. The picture below, from O’Donnell, shows well the tree structure
of the basic combinators, K and S, and thus also for the lambda calculus. Obviously,
K and S, are producing one and only one tree. Therefore it is superfluous to sign it in
its uniqueness. The uniqueness of formal systems is independent of their graphical rep-
resentation as trees or as linear structures. What counts alone, is their uniqueness.

Diagramm 8 Figur 2: Derivation rules for Combinatory Calculus

FRERSR

* \\ # \\ # ‘\ . ‘\
o ’ o
r X \\ ¥ £ * s ¥ r e

e W s i

LY

PR SEL

Figure 2: Derivation rules for the Combinator Calculus

e The system deals entirely with finite binary branching tree diagrams,
where the end of each path is labelled with exactly one of the symbols
‘S’ or ‘K. Such a tree diagram is called a combinator.

e You may start with any combinator.

e In Figure 2, the z, y. and z in dashed triangles may be replaced by
any combinators, as long as in each application of a rule, each of the
x triangles is replaced by a copy of the same combinator, similarly for
each of the y triangles and each of the z triangles.

e When a structure of the form given by the left-hand side of one of the
two rules in Figure 2 appears anywhere within a combinator, you may
replace that structure by the corresponding structure on the right-hand
side of the same rule.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

36

Such tree-presentations are well known for graph-reduction techniques. O’Donnell
resumes his interpretation of combinatory logic by trees as follows:

The useful interpretations of the Combinator Calculus are too long to de-
scribe here. The interesting qualities of this formal system for our purposes
are

e it is best described in terms of binary branching tree diagrams, instead
of sequences of symbols;

e although it has only two rather simple rules, it is capable of deriv-
ing values of every function that is computable by every other formal
system.

O’Donnell goes on by emphasizing the immense self-reflectional power of formal sys-
tems, mainly based on the fact that they are dealing with patterns and not on the ma-
nipulation of concrete chains of marks.

The idea of a schematic derivation is worth some attention, as it illus-
trates the highly reflexive way in which formal systems provide reasoning
power. Most of the intuitively important observations about formal sys-
tems are schematic—they are observations of patterns in the derivations of
the formal system, rather than individual derivations. But, there is an-
other formal system containing the derivations of the Combinator Calculus,
and also derivations with formal variable symbols. Individual derivations in
the Combinator Calculus with variables correspond to schematic patterns
of derivations in the Combinator Calculus, in a rigorous way. There is yet
another formal system that models the correspondence between schematic
derivations in the Combinator Calculus and derivations in the Combinator
Calculus with variables.

But, the trickiest twists are yet to come. The Combinator Calculus was
designed specifically to be able to simulate the behavior of systems with
variables, in a variable-free style. So, the Combinator Calculus contains a
precise model of the behavior of the Combinator Calculus with variables, and
therefore single derivations in the Combinator Calculus can demonstrate the
behaviors of schematic derivations in the Combinator Calculus. And, there's
a formal system that models the correspondence between the Combinator
Calculi with and without variables, and the Combinator Caleulus contains a
model of that system, and Figure 5 suggests the systems and relations
described above, but of course the real picture is infinitely large, and infinitely
more complicated.

From: Michael J O’Donnell, The Sources of Certainty in Computation and Formal
Systems, 1999
http://arxiv.org/abs/cs/9911010

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

37

http://arxiv.org/abs/cs/9911010

Diagramm 9 Figur 5.Variation on Combinator Calculus ant their modeling relations

This abstractive characteristics of for-
mal systems, enabling highly complex
Metasystem reflectionality is fully appreciated by
derivations my approach to distribute lambda cal-
culi and combinatory logics. They are
in a strict sense formal systems and un-
derstood as formal systems.

It seem that this kind of reflectionality is
hierarchic in a strict sense. This is not
excluding some kind of "tangeld reflex-
ivity" but it is strictly not heterarchic,
Combinator+v not allowing strict simultaneity of for-
derivations mal systems of different levels of reflec-
tionality. Neither there is any kind of
interactionality between simultaneous
acting formal systems at all.

O’Donnell gives a very clear explana-
tion of Haskell Curry’s world in "Out-
Combinator line of a Formalistic Philosophy of
patterns Mathematics™. It may be understood as
intra-contextural reflectionality, like in-
trospection (Smith).

At the end of the exercise O’Donnell
brings us back to a definition of a for-
mal system, confirming all the elements

Combinator of logocentric formalisms: linearity, ato-
derivations micity, abstractness and non-ambiguity.

The very obstacles of liveliness, creativ-

g ity, complexity beyond the crystalline

security of the "ultimate lambda pow-

ers”. Everything which can be identified and named can be denied and destroyed;

there is no security. Liveliness appears as the ultimate security strategy for living beings.
(cf. http://www.thinkartlab.com/pkl/media/SUSHIS_LOGICS.pdf)

Definition 1 (Formal system)
o A formal alphabet is a finite set of discrete symbols, reliably distin-
guishable from one another.

o A formal language is a set of finite discrete arrangements of symbols
from a given formal alphabet, with a clear and unambiguous charac-
terization of the relevant qualities of an arrangement.

o A formal system is a system of rules for deriving some of the arrange-
ments of symbols from a given formal language, with a clear and un-
ambiguous characterization of the manipulations that are and are not
allowed as steps in such derivations.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

38

http://www.thinkartlab.com/pkl/media/SUSHIS_LOGICS.pdf

4.7.1 Lambda calculi in forests

Our job is to hold up the abstractness and operativity of formal systems and never-
theless involve them into the complex interplay of interaction and reflection.

Disseminated lambda calculi or combinatory logics are characterized by their loca-
tion. They don’t come as unique but as distributed uniqueness, that is, as multitudes.
Locally, they are unique, globally, they are pluralities. It is convenient to sign their plu-
rality, to mark it with a signature. These signatures are distributed over the structure of
their architectonics. Depending on the architectonics, step by step, some small forests
are constructed. There is no doubt, that problems of circularity in the constructions are
arising: Which calculus is calculating the calculi? But at least there is some epistemo-
logical space stretched to tackle the question. The question is similar to Jean-Yves Gi-
rard’s From the Rules of logic to the Logic of Rules. (Locus Solum)

At first we have something like trees of trees, second-order trees: Trees of lambda
calculi and lambda calculi as trees of formulas. This is not in focus now, but the answer
lies in the understanding of morphogrammatics; the "calculus" of "locations".

Liveliness and undecidability
Jumping between trees creates new forms of undecidability, new kinds of unpredict-
ability as liveliness. Liveliness is the new kind of undecidability in complexions of for-
mal systems. Liveliness is not a loss of control and security but a guaranty of viability.

Equality of formulas vs. bisimulation of behaviors

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

39

5 Lambda Calculi in a 3-contextural situation
5.1 Syntactic rules
local Syntax SynLC(3> |
X(s) _ [Xl’ X2, Xs]
V(3) _ Nl,VZ,VS]
V = {vvv}
v = [{v,v',v",...}l, {v,v',v",...}z, {v,v',v",...}a]
A(3) _ [Al' A2, A?’]
¥ =&, &, €
X(s) E(3)\/(3) NN X(s) E(s) A(s)
M(S), N©@ G(3) AY (M(S)N(a))e(s) A
M @ €<3)V(3), x@ c@\yE ()\(3)X(3)M(3)> c@ AW

partial
Vi, jes(3): M ev® x® ev® oo (W', M) e A®

(. M@) e A? = M ev?, Ox'. M) € A2, M? eV?]

If the contextural situation is known, all kinds of notational abbreviation can be in-
troduced to avoid tedious pedantry and to be called a formalistic maniac (Paul Feyer-
abend, Against Method).

) @ This suggests a balanced, fully parallel
Set ot free variables of M : syntax for 3-contextural systems. The
vi,jes (3) =V (Mi.j) syntactical influence of the super-opera-

1 , 5 tor is not yet modeled.
Fv (x9) = [{x} A i]
FV (MPN®) = Fv (M) Y RV (N)
(3)
Fv (M @) = v (M®) - — — {x}
Vi,j es(3):
M™ is a closed N —term
it FVi (M) = o'

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

5.1.1 General definition of 3-lambda calculi

Definition of the m — Lambda Calculus
a. Intra —contextural rules
vijes(s):

(i) Principle Axiom

OxM)N =M x:=nN] | (9

for all M, N € A.

(i) Logical rules

M =M
Equality : M=N=N=M
M=N,N=L=M-=L

M=M'=MZ=M"'Z
Compatibility : M = M"' = ZM = ZM"
M=M'"= XXM = XM’

ij

(¢

Giii) If M = N is provable in the A —calculus, then
we sometimes write A\— M = N

(iv) [)\X.M = \Wy.M [x ::y], y & M]” (a).

b. Trans — contextural rules

Again, the combinatorial distribution of over the reflectional and interactional dimen-
sions of the full general definition of 3-lambda calculi has to be restricted by the con-

ditions of mediation. Thus the combination is modulo condition of mediation (mod
CM). Otherwise it wouldn’t be a mediated system.

General definition
Lct — 7 |of 3—lambda calculi
a. intra : (i)— (iv)
//MOD CM
The condition of mediation is a parameter which has different definitions. One clas-
sic definition is given by the conditions of "linear chiasms" as realized by the proemial
relation. But other definitions are possible and in dynamic situations, not all systems
have to be mediated. That is, the process of mediation can be in focus, while here,
mediated systems are prevailing the study, letting the dynamics to another study.
Without any mediation, systems would simply be a repetition of the known unitarian
calculus, maybe as a n-tupel collection or as different applications of it.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

41

5.1.2 Notational variants

X(g),Y<

3) c C L(S) =

linear

Basic linear-matrix of 3-contextural
pairs.

= [0y) (e, y2) (e,)

<t,u>M <tu>?t <tu>*
<t,u>", <t,u > <tu>*

General pair-matrix

The pair-matrix shows the full distri-
bution of <t, u>-pairs over the tabu-
lar matrix of complexity 3.

<t,u>", <tu>*, <tu>*

5.1.3 Signatures and Conditions of Mediation

V(3> HE -y c Lc®

H ¢LC iff H €LC,
H, eLC, iff H, €LC,
H, ¢ LC, iff H, ¢ LC,

Tl Hl gTS H3
FH ~TH,
F,H, ~F H,

r X1.3 1 'Tl,@,[l:l]'s
X' |Z0F,0,,®
XZ'S _@'[H:21[H:3

'Xl.l] -Tl,@,m—l
X' |ROF,T,,®
X2.1 ®1H2’DF1

Locators are placing terms in a complexion but they
don’t rule the composition of the complexion. Depend-
ing on the architectonics of the complex formal system
combinations have to realize the condition of media-
tion defined by the architectonics. Thus, not all formal
combinations are accepted to build a complexion.
Standard combinations, as shown below, can have
several permutations. If we start with the full pattern
S1S2S3, all other patterns are results of the super-op-
erators permutation (perm) and reduction (red).

But this is obviously only halve the story because we
are excluding the tabular patterns of interactional/re-
flectional constellations.

The main deci-
sion is, on
which tectonic
level of a for-
mal system are
we establish-
ing the "in-
side/out-side™-
relation of me-
diated contex-

(x®@)ecm®
x1.3 Xl.l Xl.l
X1.2 X1.2 xl.l
X2.3 X2.1 Xl.l

[Xt T, @00, | [T, @00, [T,,®,00, 1 [T,0,0m,1) ures
X" \z0|F,F @ | OFF @ |,0T,0,@ | 0T,,0, 0
X o F, R0 |o0.00 |oF.F0 |00,

From this, other mediations can be derived by permutation.

Cf. 8. Architectonics

© Rudolf Kaehr

Februar 16, 2006

9/16/05 DRAFT DERRIDA'S MACHINES

42

5.2 Super-operators

global Syntax® :

super —ops = {id, perm, red, bif, repl}

id (i, j): vi,j es(3): (syn,."1)
perm (i, j): Vi,j es(3): (SynLC‘,SynLcj)
red (i, j): Vi, j es(3): (SynLC‘,SynLcj)
bif (i, j): vi,j es(3): (syn',Syn)
repl (i, j): Vi,j €s(3): (SynLC‘,SynLCj>

——>(Syn Y,

id

_
perm

X" €CM 2 BopsX™) M :

X™ ecm EI:[[H[(]X(”")) ECM

X™ eCM = Hepl

[(Jx““)) ECM

X" eCM B permiix™) eCM

X(™ eCM 2 [Fed [@x("‘)) ECM
)

X™ €CM 2> bif [@x““) €CM

(
red (SynLCi ’Synl—ci)
o ((SynLci I SynLcj)’ SynLCj>

LCi | SynLCi)' Syr.ILCj)

© Rudolf Kaehr Februar 16, 2006 9/16/05

DRAFT

DERRIDA'S MACHINES

43

5.3 A family of substitutions
total/partial, local/global, simple/multiple, conservative/transformative

Substitution®

vi,j €s(3): Subst"
N for free occurence of x in M, M [x = N]

x! = N*?
X(s) x2 = N2| = Nl,NZ,N3]EN(3);
x3:=N?3
x!:=N*
X(s) x2 —x2 | = Nl,Xz,N3,
X3 - 3
x!:=N*?
y(s) X2 N 2 Ey(B), if X(s) e y(s);
x¥:=N?3
x':=N*!
y(a) X2 N2| = [Nl’yz’ys if X(a) :¢¢y(3);
x3:=N?3
Xx:=N X N X N
(3) pg (3 _ (3) (3)
(M31M32)X: :M31 =N M32x: ,
X:=N X N X:=N
X 1=X =X X
(3) pg 3 . _ (3) (3)
(MM)lx:=N|={MY |x:=N|||M%,|x:=N||;
X = N =N
X = X:=N
()\XM(S)l))\XX =N| =)y M@lx =N||;
=N =N
=X X 1=X
()\X.M<3)1))\xx::N =)\y. M(3>1 x:=NI|[;
X N X:=N

© Rudolf Kaehr

Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

44

5.3.1 Metamorphic substitutions: False citations?

A transformative or metamorphic substitution can happen on the base of the internal
structure of a full term with its contexture/head/body tectonics. The switch from one
contexture to another can be connected with a change in the head and/or in the body
of the term. Such a change is not necessarily changing the content (statement) of the
term but its significance or relevance. Depending on the architectonics, it may involve
a change in the topics: from Numeric to List or Boolean, etc. or it may remain inside
the topic, changing only some internal parameters.

Again, all depends on the notion of ab-

term = <head, body) straction.
Polycontextural abstractions are basically
"as-abstractions".
head —_— head That is, a namel as a name2 is a name3;

short: X as Y is Z.
body id body Lambda Calculus is reducing as-abstrac-
head ———— body tions to a single is-abstraction: X is X.

chiasm . .

A head in a contexture as a body in anoth-

body chiasm head er contexture is a term of that contexture.

Something as something else.

subst : term ——— term

subst) :[
consvatice

subst :

metamorph

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

45

5.4 General Constellations of Transformations

There are at least 5 main modi of transformation for distributed lambda calculi.
These modi of transformation are ruled by the super-operators (sops). The identical
modaus is intra-contextural and is repeating the classical transformation in each of the
distributed calculi. The permutational mode is keeping the internal structure of the cal-
culi intact, but is changing their order in the matrix. Similar is the reductional mode,
but reducing the complexity of the situation. Replications are repeating a system at its
locus. This replication (reflection) can be iterative (introspective) or metamorphic, trans-
forming some aspects of the situation. Bifurcational transformations are interactional
realizing themselves at once at their place and at other places. Bifurcational transfor-
mations can be seen as structural patterns of co-operation and concurrency.

5.4.1 Notational conventions

t, u € expression = < t,u >€ expression
Reduction b. (Axy.x): <tu> =t
Reduction c. ()\xy.y): <tu> =u

<tu>9 O
lid,id, id| <t,u>® =|g, <tu> @
@, o, <t,u >

= [<tu>t<tu>? <tu >’

_ (ul’ U3, uz)

_ <t1, t3 '[2)

[<t,us'<tu>’ <tu>?|,

1 2 3
[<t,u>'<tu>?<tu>?|,

5.4.2 Modi of interactions
Identical

Permutational

Reductional

Bifurcational (interactional)
Replicational (reflectional

o~ DN PRE

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

46

5.4.3 Some Beta-reduction rules

39 _ Reduction Rules.

a,-

samba®
(id,id, id)

a,.
samba'®
(id, perm, perm)
u [tl —id—>X1}
()t = u[t2 — x3}
u[t3 p—— xz}
a,.
samba®
(id, bif, id)

a,.
samba®
(id, red,, id)
uftt ————x
(wxu)t = |u [tz ———X
u [ts — X

{u [tl — X

(xu)t = [u [tz — X2

The following beta-reduction
rules are not explicitly for-
malized but should be clear
enough, at the moment, to
understand the mechanisms
of the applications of the su-
per-operators to substitu-
tions.

(id, id, id):

The rules for the identity
mapping of substitution are
simply repeating the known
definition of substitution, dis-
tributed over 3 loci,
(S123)->(S123).

(id, perm, perm):

This rule involves the substitu-
tion into a permutation of the
sub-systems S2 and S3,
(S123)->(S132).

(id, bif, id):

This simple application of bi-
furcation is producing a pro-
longation of sub-system S2
into S1. Sub-systems S1 and
S3 are not touched by this
mapping,
(5123)->(S1S2,S2, S3).

(id, red, id):

Here, the operator red1 is re-
ducing, transferring sub-sys-
tem S2 to the place S1. S2 is
repeated at place S1. Thus
at place S1, two sub-systems
are realized S1 and S2. Sub-
system S3 remains at its lo-
cus, (S123)->(S1S1,0,S3).

It is more a question of combinatorics to write down all the possible singular reduc-
tion rules. The above example are clear enough to guide to complete the set of rules.

© Rudolf Kaehr

Februar 16, 2006

9/16/05

DRAFT

DERRIDA'S MACHINES

47

5.4.4 Identical constellations

Two main sets of operators: substitutions and

Cy e super-operators.
pattern [ld, |d,|d] 0S5, =S

3 123

b.<tu> = (tltzta) This general approach is not yet answering
0 1T o0 the questions of fulfilling the conditions of me-

b.<tu> = (ttu) diation (CM). A first step to introduce the con-
ditions of mediation is to restrict the

by SEU>g, = (tut) substitution rules towards a more balanced
b3. <tu>, = (IUU> approach. If the brackets are representing or-
dered pairs of terms then their distribution

Cor <LU>y, = <UUU) over the different contextures has to be re-
c.<tu>, = (uut) stricted to fulfill the conditions of mediation.
. <tu> = (utu) This restriction simply will be a restriction of
2 ’ 101 the possible combinations of the substitution

C,. < t,u >0 = (utt) types of the terms of the ordered pair. If we

would give up these CM-restrictions the whole
enterprise would simply boil down to some
kind of a product calculus as we know it from product logics or combined logics.

()\Z' <y111’ Xo00 >) <y(3), X(3)> ()\Z- <le0, X001>) <y(3), X(3)>

A8 N8
<<y’ X>111 <y’ X>ooo> <<y’ X>1oo <y’ X>001>
% i3
(@, y®) vy)yt e)
N8

[t v)y, y2) e, x)

All these mediations will be involved in dissolving the unique stability of the Church-
Rosser-Theorem, which will, for itself and in itself, nevertheless, remain rock solid, intra-
contexturally at each locus, and between the multitude of the loci, of the distribution.

Additionally we have to study the interplay between substitution and super-opera-
tors.

(2. ly,, X011>) (9, x9)
N2
(Y, X)uan ¥ X))
N2
(xt, y2,y°)yt %2, x°)
(8
[0,y by)y,)

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

48

5.4.5 Permutational constellations

pattern [id, perm,id] :S,.. =S

123 132

b, <tu> = (ut, u®, u?)

(@) _ [

<tu>9=[<tu >t <tu>?<tu>?]

lid, perm,id] <t,u > =[<t,u >t <tu>*, <tu>?]
[<t,u>h<tu>®<tu>?] = (v, u?)

pattern [inv, perm,perm] 1S, = S,

3

b, <t,u> = (u*, u®, u?)

= <tust<tus? <tu>?

(3) :[

<t,u>
linv, perm, perm|<t,u > <u, t>h<tu >t <tu>?

l<u, t>h<tu><tu>?], = (t v, u?)

pattern [inv, perm,perm] 1S, = S,

123
[inv, perm, perm} <t,u>? = [< u, t > <tu>* <tu>?

[< u, t > <t,u>% <tu >2]1.1.1 = (tl, u®, uz)

pattern [perm, inv, perm] 1S, = S,

123
[perm, inv, perm] <t,u >¥ = [<t,u>* <u, t >3, <tu >

[<tu>? <u t>? <tu>t],, = ut)

© Rudolf Kaehr

Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

49

5.4.6 Reductional constellations

<tu>%?

= [<tu>t <tu>? <tu>’]
[id, redl,id] <tu>% = [<tust<tu>'<tu>?
[<tu>h<tust<tu>*l, = (!, u, u?)

pattern [id, red, red] 1S, = S,

b, <t,u> = (t'ti?)
b.<tu> = (ttu)
bz. <tu> = (tut)
bs. <tu> . = (tuu)
c,. <tu> = (uuu)
C,. <t,u >0 = (uut)
c, <tu> = (utu)
¢, <tu>_ = (utt)

lid, red, red] ()\z. <le0, x011>) (y¥, x9)
U’ fa.
<<y(3)' NE) >1OO <y(3)’ ME) >011>
u subst
o y2y) i %2, x°)
ll [id, red, red]
<X1, y1’y1><y1’ Xl’ X1>
ll collection
[<X1, y1><y1’ x1><y1, Xl>}
Reduction is changing the context, i.e., the contextural position of the system but not

its content. The syntax remains untouched, but is dislocated. To change also the con-
tent, the reduction would involve metamorphosis, not considered at the moment.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 50

id, red, red| ()\z. X (@ X<3)>
[] <y100 011> y

‘U’ fa., [id, red, red]

<<y111, et >100 <y111’ 111 >011>
l} subst
<X1, y11y1><y1, Xl, Xl>

ll collection

[(xt, v) iyt) (vt ¢

Pattern: [id1, redl, red1], S123 —> S111,
CM??? <1,2><2,1><2,1>, <1,2><2,1><1,1>

lid, red, red] ()\z. <y101, xm>) {y®, x9)
ll fa., [id, red, red]
<<y111’ i >101 <y111’ w111 >010>
‘U subst
(vt) iyt 1y
u collection
[y) iyt) (e, y)

A more explicite notation is the following:

samba® [id, red, red]
thematize (substitution)
identify contextures®

()\Z. <le0’ X0n>) <y(3), X(3)>
ll fa., [id, red, red]
<<y111' i >100 <y111’ ! >011>
‘U subst
(o yhy vt < x)

‘U collection

xt, v) iyt) (vt ¢

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

51

5.4.7 Interactional constellations

<t,u> o %)
id, bif ., id| <t,u SO ot u s < tu >, < tu >3
%] %) ,<t,u >

<tu>¥=[<tu>!<tu>?<tu>?
lid, bif,id| < t,u > = [< ut >4 (< tu><tu>2<tu>®),<tu >2]
[< t,u>! (<tu>'<tu>’<tu>*), <tu >2]OOO = (tl, ('), t3)

pattern [id, bif,id] : S, = S, s
by <t,U >, 00 = (¢, (e2eer) 1)

pattern [id, id, bif] 1S = S
by <tU >, = (8, 12, ()

pattern |bif, id,id] : S, =S,
by <t,U >0 = ((SEDRRS)

pattern [id- bif, bif] : S123 = S1,123,1233

by <tU >, 00 = (B (E82), (E2))

pattern [bif, bif,id] : 8123 = 8123,2,123.1
by <tU >0 = (), (E82°),8°)

pattern |bif, bif bif| :S_ =S

3 123,123,123

by < U > oo = (1), (E12°), (Et2t°))

The same scheme for the substitution of u.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

52

pattern [id, bif ,id| : S, = S

3 1,231,3

b <tu>. .. = (ul,(uzuaul),u3)

And along this line all the combinations of t and u, restricted by mediation.

pattern [id, bif,id] 1S, =S

3 1,231,3

by <tu >, = (U (E) 1)

5.4.8 Modi of interaction between contexture/head/body

The general pattern of interactionality can be analyzed in respect of the different
modi involved in the process of interaction. The matrix itself gives only the place-holder
system of interaction, also of reflection, and not how the interaction/reflection is real-
ized.

Different modi of interaction produced by the operator of alteration can be defined
with the help of the distinction contextures/heads and body. Where lambda <vari-
able> represents the head and <lambda-term> the body of the formula, lambda<vari-
able>.<lambda-term>.

1. Metamorphic interaction: Alteration of contextures at a single locus including
different head/body/statements.

2. Alterational interaction: Alteration of heads into itself including bodies under
single contextures.

3. Replicational interaction: Alteration of bodies into itself including statements
under single heads.

4. lterations of bodies in interactional situations which are ruled by a head under a
single contexture are not interactions but superpositions. That is, at each position
of the polycontextural matrix superpositions can take place.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

53

5.4.9 Reflectional constellations

If a system is reflecting upon itself, making an inner model of itself, entering intro-
spection and other self-referential processes, the replicated system has to be posi-
tioned, it needs a locus in the architecture of the reflecting system which is part of a
societal constellation. The space for such placements is offered by the reflectional axis
of the polycontextural matrix which is part of the architectonics of the poly-lambda cal-

culus under consideration.
Two examples of reductions in reflectional constellations
pattern [repl id |d3_3} S, =39S

1.11.21.3° 227 123 11121323

b,. <t,u > = ((utur2ar?), 2, ¢)

000.1.1

. . (
[repll.l,l.z,l.S’ 'dz.z’ |d3.3] <tu>

1.1,,1.2,,13

[(<tust<tusP<tu>),<tu>?, <tu >3'3]000‘1.1 = ((Ut

11 repl

pattern [id ids_s] S .. =S

21,222,237 123 1.1,21,2.2,3.333

by <tu> = (t!, (u2tu?2u??), t3)

repl

1.1° 2.1,2.2,2.37

[id

[< t,u > (< tu > < tu >2?<t,u >>), <t,u >3'3]0_m‘1

Short form of the results of replications and reductions

>l.l,1.2,1.3

[<< t,u > ,<tu >, <tu >3'3]

000.1.1

>2.1,2.2,2.3

[< t,u >, (<tu> ,<tu >3'3] (£2, (u*u>2u?e),

0.111.1

Matrix notation of the super-operator effects

< (u1.1u1.2u1.3) t2

), 2, t°)

id] <tu>9 = [,<t,u S (< tu > < tu > < tu >2%), <tu >3

_ (tz ’ (uz.luz.zuz.s) , t3>

)

)

<t,u>", g, @
[repll'u_m, id, ., ids_s] <t,u>? =|<t,u>", <tu>?? o

<t,u>, @, <tu>*

<t,u>" <tu>*, o
[id, . repl,, ;0 id,,] <tu>" =g, <tu>??, o

@, <t,u >, <tyu>*

3 _ [<< tustctu sty >1'3>,<t,u S22ty >3.3]

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

54

5.4.10 Modi of reflection

The general pattern of reflectionality can be analyzed in respect of the different modi
involved in the process of reflection. The matrix itself gives only the place-holder system
of reflection, also of interaction, and not how the reflection is realized.

Different modi of reflection produced by the operator of replication can be defined
with the help of the distinction contextures/heads and body.

1. Metamorphic reflection: Replication of contextures at a single locus including
different head/body/statements.

2. Alterational reflection: Replication of heads into itself including bodies under
single contextures.

3. Replicational reflection: Replication of bodies into itself including statements
under single heads.

4. lterations of bodies in reflectional situations which are ruled by a head under a
single contexture are not reflections but superpositions. That is, at each position
of the polycontextural matrix superpositions can take place.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

55

5.5 Connecting poly-lambda calculi to a complex formal world

5.5.1 Polylogics

Boolean
Booleans®
true, = K'
false, = K',
true, = true,
1“alsel ~ true,
false2 = false3

Junctions

Transjunctions

5.5.2 Numbers in trans-classic systems

Numbers
Some poly-arithmetics

Computation and poly-lists

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

56

6 Annoy the deadheads!

There is no doubt, that all this tedious stuff has to be programmed to be properly
explored and as a result, formalized again, to another step of ultra-pedantic perfec-
tionism. But to start programming, we have to pass some rounds of the intuition-formal-
ization merry-go-round. Also the idea of disseminated lambda calculi doesn’t fit into a
programming paradigm, if taken seriously and literally, there is no problem to model
or simulate these patterns in a common programming language, say Scheme or ML.
Some people are not aware about such differences in the interplay between conceptu-
alization and realization, and start to worry.

6.1 A simple identical constellation
id(i, j): vi,jes(3): (SynLC"") o (Syn) i,jes(3)

Diagramm 10 The same is different
samba” [id, id, id|
Inear
thematize (parallel, numeric, arithmetics)

identify contextures®

(()\x.x(S) +4+— x(3))(>\y.y(3) ++ —y(a))111>
Yavavs AN
Owx +x) @+ 1] [(Ovy +2)1) + (Owy +1)2)
Ouex) (1 1) Oy +2)1) + (Oyy +1)1)
(xx —=x) @ -2 |((yy —1)1) = (yy —1)1)
ANRNAN v
(1+1)+(+2)
(1+1)+(1+12)
(1-1)-(-1)

Between red S1 and green S2 exists a discontextural gap. There are no counting
procedures which makes it possible to unify these two different numeric statements. We
can count as far as we want, there is no chance to switch the contextures or to enter
into a different one. All we can observe is that they look quite similar, analogous. If
someone can not resist to unify them he/she should be aware that simply a new, third,
systems would be introduced, say in pink or grey. Which is, of course, no problem at
all. Identity is an intra-contextural, sameness or analogy a trans-contextural notion. The
arithmetics used are not in the focus now.

Substitution onto itself or into another are two modi made accessible by poly-Lambda
Calculi. A different story is introduced, if something of a contexture is substituted for
something else, different or similar, in another contexture, say from red to green. Such
trans-contextural operations are not in conflict with the above statement of the inacces-

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

57

sibility of, say, numbers of one contexture from another contexture by a counting alone.
But it splits the homogeneous identity of isomorphism into heteromorphisms, as a result
some displacements of the uniqueness of the Church-Rosser-Theorem are on the way.
What we get is something like: If red(red(X)), green(red(X)), then Xred simil Xgreen.

The two equations are representing the same arithmetical situation, but they are not
identical because they are realized at two different contextural loci. They are the same,
but different. Mono-contextural thinking is focussed on one and only one contextural
locus and is therefore not aware of it. The equation as green and the equation as red,
like a formula as a program or as a set of data, both at once, but without any self-
referential conflicts, but distributed and mediated, embedded in a working complex
scriptural patterns, an ultra-formalism.

Reductional diamonds are classically hierarchic. The reduction path is identical to
the construction path. This symmetry is no longer compulsory if we introduce slippy re-
ductions like colored reductions. A new asymmetry is possible, ruled by the different
but similar substitutions. In other words, the reductions as computations are discontex-
turally concurrent. They are also co-operative in the special sense, that if one compu-
tation is not working, the other one can do the job, because they are doing essentially
the same.

6.2 Internal vs. external super-operators

As long as the super-operators are only active externally it is easier to decompose
the formulas into their sub-system parts and then apply the super-operators.

This is not working for internal super-operator activities. A good example for internal
bifurcations are transjunctions. Internal permutations are internally forced by nega-
tions. Internal super-operators have to be introduced into the different topics, like poly-
contextural arithmetics, lists, logics, etc.

How are external super-operators motivated? External super-operators can be moti-
vated as global operators, ruling the local systems independently of their internal struc-
ture. Thus, local sub-systems can be permuted, reduced, bifurcated as such, even if
there are no internal operators forcing this behavior.

The motivation for internal super-operators is given by the behavior of the internal
operators under consideration. How should we understand the interplay between in-
ternal/external operators?

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

58

6.3 Internal vs. external super-operators
6.3.1 External super-operators [id, redl, id]
s9: [id, red,, id]((mx® ++ 7 x¥) vy ++ 7 y9)123)
st (()\xx +x)Oyy + y)l)
(xx +x) @ +2) | (Oyy +1)2)+ (Oyy +1)2)

(1+1)+@2+2)
[id] gl gt

s ((wx+x)(yy +y)2)
Oxx +x)2+2)1 ((yy +2)2) + (Oyy +2)2)
(2+2)+(2+2)
[redl] 1§22 ,gt?

S%2: (()\xx /x)(Myy 7 y)S)
(xx 7 x)(373) [{(yy 7 3)3) 7 ((dyy 7 3)3)
(373)7(373)

[id] - g33 g33

result : (1+1)+@+2), (o, (o)
[id, red,, id] : $% —— 1232 : (24 2) (21 2)), (o),)
(@), (2),((373)7(373))

short :
[id, redl, id] - g1 gl11233 .

{a+2)+a+1).((2+2)+(2+2)),((373)7 (37 3)].

S123 —> S1] S2, S3.

The external super-operator pattern [id, red1, id] is at the start of the constellation.
Thus, the formula in sub-system S2 is moved to S1: S2—>S1. This move from S2 to S1
is a reduction of the position S2 to S1. That is, S2 abandons its position in favor of
position S1. But the content of the formula of sub-system S2 remains, what is changing,
its location, can be interpreted as a change in relevance. The viewpoint, from which
the formula is stated has shifted to another viewpoint. But this is not a subsumption un-
der the position of S1 because S2 receives its own location at the position S1 as S1.2,
ie., S$2.2—>S1.2. In this example of reductional behavior, the mathematical
content of the formula is not considered.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

6.3.2 Internal super-operators [id, bifl, id]

s : [id, id, id](Axx® + a7 x?) yy® + @7 y)123)
st ((xx + %) Oyy +y)1)
Oxx +x)(@+1) | (Oyy +1)1) + ((Oyy +1)1)

(1+1)+(+2)
lid] st — st

Sl ((Axx & x)(Ayy @y)Z)
(xxax)(2e2)] (Oyy@2)2) @ ((yy ©2)2)
2e2a(2e2)

S%2 . (()\xx o x)(\yy @y)z)
(xxax)2e2)] (yy@2)2)a(yy 22)2)
2e2)a(2e2)
bif, | : * ——s?|| 8!

S (()\x.x 7 x)(\yy 7 y)3)
(/\x.x / x)<3/ 3) | ((/\y.y / 3) 3) / <<)\y.y / 3) 3)
(373)7(373)
id] : 8 —— &3

result (1+1)+(1+12), (@), (@)
[id, bif , id] : §% ——st222233: ({24 2) 6 (20 2)), (20 2) 0 (22 2)), (o)
(o (2),((373)7(373))

S$123 —> S1, S2, S3 —> S1, S2]|Ss1, S3.

The external super-operator pattern [id, id, id] is the start constellation. But the inter-
nal structure of the formula includes bifurcational (transjunctional) operators. Thus, the
the formula in sub-system S2 splits: S2—>S2| | S1. Because we are not yet dealing
with the internal structure of the formulas and their topics the notation is not giving
much information, its purpose is only to show the functioning of bifurcations and not to
give an interpretation about the interesting features of poly-arithmetic systems.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

60

6.4 A permutational constellation
perm (i, j): vi,j € s(3): (SynLci,SynLcj) e (synLCj ’SynLCi)

6.5 A reductional constellation

red (i, j): vi,j es(3): (SynLC‘,SynLCJ) e (SynLC‘,SynLC‘)

samba®® [id, red,, id]
inear 1
thematize (parallel, numeric, arithmetics)

identify contextures"

((Ax.x@ +4+7x9) yy? + 47 y(3>)123)
/)) e N\
l(()\x.x x)(L+1), Owx +x) 2+ 2)[{(Owy +21)1) + (Oyy +2)2), (Oyy +2)2) + (Oyy +2)2))
(xx 7 x)(373) (yy 7 3)3)=(0yy 7 3)3)
NN /)

(1+1+@+1), 2+2)+(2+2)
(373)7(373)

S$123—>51.151.2,S3.3

6.6 An interactional constellation

bif (i, §): vi,j es(@): (syn.'.syn.!) —— ((Syn.c' IIsyn. '), Syn, ')

bif

The same as bifurcation example.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 61

6.7 A reflectional constellation

repl (i, j): Vi,j €s(3): (SynLC‘,SynLcj) — ((SynLCi |SynLCi), SynLCj)

S123 —> §1.1S81.2, S2.2, S3.3

s : [repl, id, id]((/\x.x(3> +4+7x9) Oy ++7 y(3))123)
St (()\x.x +x)(Ayy +y)1)
Oxx +x)@0+2) | (Oyy +2)2) + (Oyy +1)1)
(1+1)+@+1)
SR (()o(x + x)(Ayy +y)1>
Oxx +x)@+12) | (Oyy +2)2) + (Oyy +1)1)
(1+1)+@+1)
[repl] .Gl gligl2

S <()\x.x +x)(yy +y)2)
Oxx +x)2+2) 1 ((yy +2)2) + (yy +2)2)
(2+2)+(2+2)

[id] g2, g22

S ((Ax.x 7 x)(\yy 7 y>3)
()\x.x / x)(S/ 3) | <(/\y.y / 3) 3)/ (()\y.y / 3) 3)
(373)7(373)

[id] - g33 g33

result :

(1+1)+@1+2), (o), (2)
[repl, id, id] : $% ——s*122233 - (1 11) 1 (14 1)), (2+2) + (2+2)), (o)

(), (@), ((373)7(373))
short :

[repl, id, id] Sgls | gl1122233.
a0+ @) (@rD)+a+0)(2+2)+(2+2).((373)7(373)).

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

62

7 More to Bore: From Y to Why

Don’t worry, darling. This is a Hoax.

7.1 Remembering
»Etymologically speaking, correct opin-
FIXEDPOINT THEOREM ion is orthodox; paradox, however, lies

(i) VF 3X FX = X. beyond opinion. Unfortunately, ortho-

() dox attempts to establish the orthodoxy
ii) There is a fixed point combinator of the orthodox results in paradox, and,

Y = \f. ()\X £ (X X)) (/\X. £ (X X>> conversely, the appearance of paradox

within the orthodox puts an end to the

such that orthodoxy of the orthodox. In other

words, paradox is the apostle of sedi-

VF F (Y F) =YF. tion in the kingdom of the orthodox.*

,As long as was possible, logical ortho-

doxy attempted to treat such seditious intrusions just as would any other orthodoxy, that is,

to dismiss them as cranks, as (syntactic) pathologies, (semantic) freaks, in short, as aberra-

tions (of thought).“ R. H. Howe, H. von Foerster, Introductory Comments to Francisco Vare-
la's Calculus for Self-Reference, Int. J. General Systems, 1975, Vol. 2, p. 1.

To define X with

Proof. (i) Define W = .F (x x) and X =WW. Then WW means an

iteration of W to

X =WW = MF (xx)W = FWW) = FX. o This is. nat

(ii) By the proof of (i). (Barendregt) urally, a innocent

operation as

long as we restrict ourselves to strictly identical systems, i.e., to non-ambiguous situa-

tions. Iteration, repetition, recurrence in a complex domain is always involved with the

chance of change. lteration as selection or iteration as election. In other words, itera-

tion as iteration and at once as alteration. The same, realized in a different contexture,

is different. In complex situations, like polycontextural, the reference in a self-referential

process can slip to another, not diverse but similar domain without getting inconsistent

to the definitions—nor lost in the abyss of the unknown. Thinking on slippery grounds is

supported by nets of polycontextural constructions.

In YF, the term Y is an operator and F is

Y = (Af.()\x.f <x x)) ()\x.f (x x))) an operand of the application YF. Be-

cause of the highly abstract definition of

YF = (Af'(AX'f (XX»()‘X-f (XX)))F the Lambda Calculus it is possible to

N ()\x = (xx)) ()\x = (xx)) change the operand, step by step, to an

) ’ operator. Now, F is an operator to (YF)

= F (M. F (xx)) XX F (x X and also an operand to Y in (YF). This
(. F (xx)) (. F (xx))

~F (Y F) double-functionality of Y is saved in the

mind of the reader, the difference is nulli-
fied by notional abstraction.

Polycontextural strategy tries, in contrast and additionally, to inscribe such a nota-
tional abstraction into a graphematic play. Because there is no trust in mental repre-
sentations we have to write it down.

The iteration of "lambda x.f(x x))"" in the definition of Y can easily, without violating
the rules, turn into a metamorphic alteration in polycontextural situations. Because all
objects, that is, all terms in polycontextural systems are, from the very beginning, com-
plexions, —even atomic terms are complexions—, the very beginning of the machinery
can be involved into metamorphosis.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

63

7.2 Distributed Y-Operators

A strictly parallel distribution of the Y-operator over different contextures is a first step
to play with self-referential operators in poly-Lambda Calculi. In this case, Y-operators
operate strictly isolated to each other, without any interaction and reflection, and not
sharing any common terms. Nevertheless they are involved in their common framework
of polycontexturality. The sets of their terms are not only disjunct but discontextural.

3— FIXEDPOINT THEOREM
(i) There is a fixed point combinator
Y =)\f<3).<)\x. £ (x x))(Ax £ (x x))

such that

Proof. (i)

Define W = F® (xx) and X®¥=w®w"®.

Then

X(3) = W(s)W(3) =)\(S)X.F(S) (X X)W(s)
= A%, (F(3) (x x)) ()\(3)X.F(3) (x x))
= \Oy g® (X X>W<3) — g® (\N(s)\N(a))

Y9 = ()\f<3>.()\x.f(3) (x x)) ()\x.f(e’) (x x)))
YR — </\f . (/\x. £ (x x))(Ax. £ (x x))) Fo
= ()\x. F¥(x x)) M. F9 (xx)

= F© ()\x F¥(x x)) ()\x F¥(x x))

-~ FY (Y (3) F(s))

This doesn’t sound specially
interesting, but guaranties au-
tonomous recursions and re-
cursive functions in each
contexture.

As a result, we can deal with
a kind of parallelism unknown
in existing implementations,
the architectonic parallelism.
Architectonic parallelism is
also introducing a new form
of graph reduction preserving
at each locus the known meth-
ods of graph reduction. Some
first applications of both, the
3-contextural combinator Y
and the architectonic parallel-
ism, applied to an implemen-
tation of the Fibonacci
numbers, define FIB (YYY)
FIB®), in contrast to other par-
allel implementations, is pro-
posed at:

http://www.thinkartlab.com/
pkl/lola/FIBONACCI.pdf

[style[functional

samba® [lid, [id, [id DI < architectonics :[id — super — operator ,[@omplexity 2 [3 >

[topi cshumer i c ML < Hfib, :int; —— > int; [0 = 1,2, 305 01
[thematize FIB® [} <Scenario :[FIB® = (fib,,Hib,,fib,) I
i dentify Gontext 1 ridentifv@@ontext _ [identify[dontexture,
|_d2-|fyf-on ure |»de;-|fyf-gn ure, - define fib,
I Ir:zdlblm Ialrrni(jdI Zml (lambda (D))
a a a
ui ((D)) ((D)) (lambdaladd)
|| (.. (equalnZero\ (.. (equalnlZzero\
if if o) | (.. (equalnlzeroy\
equalnlone equalnlone f
equalnl]‘hne)
[ITbne [ITdne ne
fi fib
(\(fib, UrsubmoneD) |\ (fib, UrsubmBaoD) (tadd b, Cfib, 1)
(elect3) (eleCt3) 2
- - (elect, [@ect,)
© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 64

http://www.thinkartlab.com/

7.3 Why not some Why-operators?

After having enjoyed a quite secure parallelism of known constructions, simply re-
iterating the crucial pattern of self-referentiality of an Y-Operator, some more slippery
jumping exercises should be experienced.

samba (id,Mepl ,[id) — horizon

[themati ze[[Why'@ @)]

[lambdal{f * £12 £12)

[identify[Gontexture’

[define Why!

lambda (£1)
lambda (x)

((f (xx)))]

lambda (£12)
lambda (x)

((f (xx)))_

[lambda (%)
lambda (x)

((f (xx))) 1

Why - FIXEDPOINT (THEOREM

(HYIFYFIXFIXRX.

According to the analogous principles of same-
ness as introduced by the as-abstractions, substi-
tution of the same has not to be necessarily
substitution of the identical term.

We also don’t have to accept the general for-
malistic trick as the only way of thinking, name-
ly, that a part is nothing else than the whole and
the whole is not worth more than a part because
they are both simply terms in an abstract gener-
al calculus and nothing more.

On the other hand, there is to much sacrifice in
the decision for a purely formalistic approach to
self-referentiality.

A shift (slip) in the reference.

(”)D-hefe[[S@[flxed |])OI nt mOI'TbI na'[Ol' From |dent|ty to sameness.
[MIVHY =2 £ (Ax.0F* (xx))(Ax.CF2 (xx))

suchlthat O

My ¥ F @ F (WHY F@)3 0HY F@.0

According to the tabular structure of the polycontextural matrix the Y-operator can be
involved in all combinations of distribution along the reflectional and interactional di-

mension.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

65

7.4 Graph diagrams for Y and WHY
"The Y combinator can be implemented by using the reduction sequence Y(f)=f(Y)f i.e. as

AN A
Y/ \f f/\@ f/®
I\

But, as a copy of the original graph appears a sub-graph of sequent graphs in the (infinite)
reduction sequence, we can tie the knot by making the sub-graph coincide with the graph
itself.” A J T Davie, p. 160

"the sub-graph coincide with the graph itself"
this is a highly complex and paradox
statement. The sub-graph "coincides" with
the "graph itself", thus it is not identical.
Because the "graph itself" can also be un-
derstood as the same and analogues but
not identical graph, belonging therefore
at once to different contextures, reduction
and substitution can be distributed over
different loci. The diagram shows, by its
indices, a reflectional constellation. That
is, iteration is modeled as replication.
With other indices it could also be an interactional or mixed constellation. The process
of iteration, i.e., the repetition of the identical term, slips to another contextures, repeat-
ing itself as another but analogues term. To speak or to write about the mechanism of
a term changing its contexture itself needs an own contexture to give space for the ab-
straction mentioning, identifying, a term moving from one to another contextural real-
ization.

To calm the tempers, again, at each locus the classic construction holds. No chances
have disappeared. Depending on the structure of the connection between different
loops a typology of new fixed-point operators, transcontextural fix-points, can be es-
tablished.

From the aspects of circularity involved in the distributed Y-operators two circles are
now in the game, the classic internal circle, repeated at different loci, and a queer,
i.e., orthogonal/transversal circle between the distributed Y-operators.

Re-entry of/into identity or of/into sameness—that makes the difference.

A lot of work has been published in the past about non-vicious logical circularity, some are
collected at: http://www.thinkartlab.com/pkl/media/dissem-final.pdf

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

66

http://www.thinkartlab.com/pkl/media/dissem-final.pdf

7.5 lterability in Y- and WHY-operators
7.5.1 Mono-contextural combinators

Collection of the essentials for the journey

Combinators Proof [of [Y f 2 [F (Y f) ; This is the classic proof of
| ZAX.X the fixed point theorem in
Y f =ENS(BWB) f combinatory logic using the
Ki=[dxyx (I (S(BWB) ff operator Y.
K, EAxy.y
(ITITE-(BWB f [(]BWBH) The exercise in self-referenti-
SExyzxz(yz) - :
I]]]]]IE:EN(B f)(BWB[f) ality is more direct to the
W =[A fx. fxx point in combinatory logic
B&Mfgx.f(gx) D]]]]BEBf(BWBD‘)(BWBEf) terlmsI than [n the lambda
(ITE calculus version.
YZWS(BWB) F(vf)
_ _ As in the lambda formulation everything depends
W' =[A' fx. fxx on the modi of repetition, i.e., the kinds of iterability.
Q =@ fx. fx This crucial functionality of W doesn’t mean that the

o _ operator W is prior to the other operators S, B and

W' OF'x[Z ['xx,[teration defining them. The importance is defined by the

i i i+1 ; structure of iterability involved in Y and WHY. And

Q' 'x[= ™ x, Maccretion this is realized by W. The operator W is a Wieder-

holungs-operator. The German term Wiederholung

appears in philosophy as a twofold term: Wiederholung des Alten and Wiederholung

des Neuen (Kierkegaard, Weber). Schdpfung als Wiederholung (Gunther, Gehlen).

Repetition of the old and repetition of the new. Or in other words: repetition as iteration

and repetition as accretion. The German term Wiederholung is incorporating at once

the difference of iter/alter in iterability. Thus, repetition as iteration is only one side of

the coin. Additional to the intra-contextural operator of repetition W | have to introduce
a trans-contextural operator Q which shifts formulas from one contexture to another.

Jumps between gaps: From W to Q

(W mult) => mult (mult). This correspondence transforms easily to:

(Q mult) =>mult'(mult)), i=j in a polycontextural situation.

Again, there is no unambiguous definition which forces to refer to one and only one
domain of application in applying the combinator W to a referenced term, say mult.
There is an interpretational gap between the abstract combinators and the concrete
references of the operators. As long as we belief in one and only one domain of refer-
ence of an application both are coinciding, the uniqueness of the calculus and the
unigueness of the domain.

Because combinators are applying on themselves the same argument as for the in-
terpretational gap has to repeated in respect of the operator/operand difference,
which constitutes a dis-contextural gap.

The following formula stuff (§ 7.5.1-7.5.4) is material from manuscripts dating back to the
70th and 80th. Maybe in the meantime, they matured in the filing cabinet. Another ap-
proach has been introduced at: htttp://www.thinkartlab.com/pkl/lola/Godel_Games.pdf

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

67

htttp://www.thinkartlab.com/pkl/lola/Godel_Games.pdf

7.5.2 Paradoxial constructions: Between Russian Dolls and Uroboros
These are topics from the 70th, they can be studied in full at the right place.

S :[Opart, 5———=[0Whole

(I I T duplication
S, [Tpart, [5— Lwvhole,
() (I
33 mj)art?: E [medi ation [N thOIes
Vt, 3G, [, 5— [G, [T
Vt, 3G, [T, 3—— (G,

PRIl) 2 [3,V,F, 1]
Proemialitybetween :[1
1.[quantors :[A@nd [V
{Z.Efunctor (F,[&rgument [

In the metaphor of the graph-reduction for Y, the part/whole relation comes as "'sub-
graph™ and "graph itself" and the mystery lies in the magic formula "we can tie the
knot by making the sub-graph coincide". A possible resolution of such magics is tried
by another magical device, the proemial relation, here, between parts and wholes dis-
tributed and mediated over different loci embedded in the horizon of sameness.

Nobody should feel stupid if an understanding does not happen to conceive that the
biggest Russian doll is part of the smallest Russian doll, and at once, that the smallest
Russian doll is encapsulating the biggest Russian doll. In computer science we have not
only to accept that but we have to live with and from it. Why not change to chiasms?

Substitution in the mode of identity

1. [IIITAF IV F CF [)26 0 (f)DMpostulation

2. (T OF CITF, [) @& 3+ OF (f) [TBpecification
3.0 = F, IV O :0F, {f)23 (7 (f) CMBubstitution W
4. [T, (F))2 G OF, (R,) CEontradiction

Strategies of avoiding this kind of contradiction had traditionally been:
1. hierarchical type theories like Russell’s to avoid the contradiction,
2. Acceptance of contradiction and splitting the formal system into

a) meaningful semantic propositions and

b) meaningless abstract objects "obs" (Curry).

The new strategy obviously, is dissemination, ruled by proemiality.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

68

7.5.3 Some other pictures around paradoxes

non ExProof(x,g,g). Such a proof, where a two-variable predicate is given the
same value for both its arguments, is called a proof by diagonalization, and it
crosps up frequently in the theory of infinite sets and mathematical logic.*

A.K. Dewdney, The New Turing Omnibus, A5, p. 35, 2001

Presentation of the "classic" R-antinomy

Dard b Mamiochen " R fkiumace
S - el

Subshtukon T :

N

(Memes K &) Weuse, M (xenen xdx) | Gound M
Ip¥x oo pen) | Vomiotta Vx (x e wed xéx) | Vovalte x

Var p wimd dumch Hougg 1 omehl
Vor x uiml Juwdh ewad M omeht

These two diagrams goes back to a very inspirational seminar with Prof. Wolfgang
Niegel, Informatik, Universitat der Bundeswehr Minchen, 1988.

http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-Prop.book.pdf

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

69

http://www.thinkartlab.com/pkl/media/SKIZZE-0.9.5-Prop.book.pdf

Polycontextural presentation of the R-antinomy

?obokpu-\u‘\wnh 3w-,&..a ola.
\ R- ‘w’-\'uwdc

——

.&LN. TX

(Mer e nd M) | oy i C-) | Qoo M
H}‘Vx(—--') JVar X

Yx G) b Varalee X

(MER e e)] Mewge (=) | St
B)LVX(-") amoda ¥x(—) {van X
Comoatn,

Substitution in the mode of sameness

13OFVE O mE 119)23 0@ (19)Ipostulation(f onstellation

2. Al IFol[@fl)mDEBlD‘l(f)D]]]]]]]Bpecification+contextural [Selection
1

302 = ROV f2:0F,? (02) B 3 [F 2 £) CIMBecretivelSubstitution @

1
2
4. [T, ? (R,) 2 G+ R, (F,!) : MBomparision : non — contradiction

Cf. Kaehr, Materialien 1973-75, in: Gunther, Grundriss, 1978, p. 57

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

70

7.5.4 Modeling self-referentiality in poly-combinatory logics

Some more constructions from the filing cabinet.

Brackethodelinglof Fitch'sidonstruction

'W(BN)(W(BN)):hyp
BN (W(BN))(W(BN)):mveim
N(W(BN)(W(BN)))mIIB @im
W(BN)(W(BN))ZIN(W(BN)(W(BN)))ext

R0V (B> 2B W! B -
Foz E‘W\/Z(BZ Bl)E[BZWZ B2 -1 [f2 E[Ql(FOl)

F? 230 (B3)F22W? (B! |F!
e w2 (B2) (WA (B

(IR (B2 W2 B2 ~*(B*W* B* -?)
IR (S* (B W? B2)(B*W* B*) -,

s?(S) & N\/Z.l SZ.l (B(3) W(S) B(S))

Theorem:O

vEIXEF9 v R XD 2y ?)2 X(YY?)

Modelingl@long Fitch
"W (B N)is@member [of W (B N)"

o)WV,

eIV (BN)(W(BN))

BN, give DIED(B® Nl)(Wl (BN,))

BN, (o, s,
N, W (BN,))(w? (BN,)

N, [W*B"N,)(W?BN,)

[Nl [@\Nl.Z |:$1.2 (B(B)W(B) B(S)))
a)Z>[dontradiction
B)E=>[digtribution

Again, the construction of
Fitch is producing a conta-
diction. But in his case only
if the axiom of the excluded
middle (TND= X or non X)
for propositions is added to
the combinatory system.

Futurism from the 50th

"It follows from this [fixed
point] theorem that Y can
be used to construct obs of a
more or less paradoxical
nature. Given any X, YX is
an ob which is unchanged
by X. Thus YN, where N is
negation, is the FF of the
Russell paradox; YK is a
combinator which cancels
infinitely many variables;
[...]. For such purposes Y
promises to be useful in the
future. The famous argu-
ment of Godel may, evident-
ly, be thought of as an
application of Y.

The obs of YX all have the
property that they cannot be
reduced to a form which is
not further reducible,i.e.,
which does not contain a
component which can form
the left side of an instance of
a reduction rule." Curry/
Feys, p.178

This polycontextural con-
struction is producing no
contradiction even if TNDs
are added to the singular
contextural combinatory
systems. Instead of a possi-
ble contradiction we get an
incomparability of a certain
distance, here: distance=1.

© Rudolf Kaehr

Februar 16, 2006

9/16/05

DRAFT

DERRIDA'S MACHINES

71

7.5.5 Visualizing the metaphor of interweaving formula developments

At each locus we may have a formula development involved in proving the classic
self-referential construction of the Y-operator. But this distributed developments can also
be involved into a transversal movement constructing a formulation of the Y-operator
by crossing the borders of the contextures in use. This queer movement of crossing the
borders transcontexturally is shown below. The equation could be placed at an own
locus.

[[thematize[$elf - referentiality

[identifyGontextures™

[W(BN)(W(BN));w = Q][w(BN)(W(BN)) 1[w(BN)(wW(BN))
BN(W(BN))(W(BN))1||[BN(W(BN))(W(BN))T||[BN(W(BN))(W(BN))
N(W(BN)(W(BN)))D]]J N(W(BN)(W(BN)))O || N(w(BN)(W(BN)))D
N(W(BN)(W(BN)))O || N(W(BN)(W(BN)))O || N(w(BN)(W(BN)))O

[[thematizeldistributed [3elf — referentiality
[identifyGontextures™
[
QEN)(WEN) o .
[BN(W(BN))(W(BN))]||[BN(W(BN))(W(BN))]|||
%) %)
N(W(BN)(W(BN
° o (w(en)(w(an))
elect [Gontexture2 elect [Gontexture3 N (W(BN)(W(BN))) =
- la(en)(w(Bn))
Towards poly-contextural Y-operators
W=EN‘S(BW/ B),mnono—YEfor[[J= j=1 A little catalogue
of a mix of opera-
my™ = wv(m)s(m) (My g(m)),Hboly— y(m tors for self-

referential con-
stellations in for-
mal systems.

vt €s(m): %" =w's™ (B™w*B™), intra - v,
mvHY™ =w's™ (B™WIB™) Mrans- Y, 0= j Es(m)
Obviously, all these highly interesting polycontextural designs and modeling of

self-referentiality, introducing poly-Ys and WHY-operators, are only a very first step
into an unknown world far away from all known second-order circular magicks.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

72

7.6 Combinators in the general context of iterability

7.6.1 Interdefinability among combinators (Curry/Feys)

IXEX Y2 WS(BWB) | (00K

Kxy (= X W Z[TS | 3[3KK =[3KS
Syz=02(yz) szB(B(BW)C)(BB) W= 3S(KI)
vczxggm;yx s=®(8(B(csl))c)(eB) BES$(KS)K
Bf);}:(EFEf(QX) wic(B(B(B)C) BB) CBE(BES)(KK)

YZ(CS)S(B(CS)B)

Diagonalization and formal languages

"Secondly, it shows that we can only describe a tiny subset (not even a fraction) of all pos-
sible languages: there are an infinity of languages out there, forever beyond reach."

"Parsing is the process of structuring a linear representation in accordance with a given

grammar.”
Dick Grune, C.S.H. Jacobs, Parsing Techniques, p. 22

Cantor would be happy! Everything is collected together properly: all possible, in-

finity, forever, beyond, reach, out there, tiny subset.

Now, where have all these languages gone? All possible, but out of reach!

An extensive table of SKI-defined operators as Mockingbirds is collected in the bird-

cage Combinator Birds —They may sing but they don’t mate.— at:
http://www.angelfire.com/tx4/cus/combinator/birds.html

Others, —with tickets only—, at Combinatorial Ornithology:
http://library.wolfram.com/infocenter/MathSource/4862/

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

73

http://www.angelfire.com/tx4/cus/combinator/birds.html
http://library.wolfram.com/infocenter/MathSource/4862/

7.6.2 Types of iterability in SKI
Combinators can be considered as operators of iterability. In this sense we can in-
troduce different strength or modi of iterability realized by different combinators.

Operator | is iterating itself as an identification in a constellation (formula).
Operator K is iterating the one ob as a confirmation and eliminating all other obs.
Operator S is iterating the obs as a distribution of it in a constellation,

Operator W is iterating an ob as a duplication of the ob in a constellation,
Operator C and B are iterating the obs for reorganization in a constellation,
Operator Y is iterating the constellation of Y itself as a self-iteration.

Names of operators:

After Curry (Menne): | is an elementary identificator, C a permutator, W a dublicator
(repetitor), B a compositor, K a cancellator (eliminator) and S is a distributor.

After Smullyan, | is the bird who loves (identifies) all birds, himself included.

Depending on the number of repeated obs iterability can
Y2 WS(BWB) have different strength. The operators B and C are of
(I strength O, the operator W of strength 1, and the operator
. S is of strength 2.

[(2 - M - 0~ iter The infinite iterability of the Y operator can be defined on
infiniteliteration(of [Y the base of a 1-2-0-1-O-iterability operator. These levels of
strength may be compared with other orders and with Smul-

lyans ranks of combinatory birds.

In a SKIl-system of combinatory logic the operator S is guarantying the system full
iterability. The distribution of obs by S is possible only with the implication of iteration
as repetition. Because S is fundamental to the SKI-combinatory system, the type of it-
erability in combinatory logic at all is repetition.

This becomes quite obvious if combinatory logic is connected to recursive number
theory. But the iterability as repetition (iteration) in combinatory logic is not restricted
by the exclusion of circular or self-referential constructions. For that, the Y operator and
its equivalents are proof for unrestricted self-referentiality in combinatory logic. This is
extending elementary repetition to recursion and other types of iteration. But, because
Y-operators are based on SKIl-operators, esp. the combinator S, they are realized as
repetition only. Repetition only means iterability in the modus of identity, excluding all
traits of accretive repeatability or alterating disremption. That is, iterability is restricted
to the ITER, excluding the ALTER of the poly-notion iter/alter-ability. This decision for
identical iterability guarantees strict dis-ambiguity of formal systems. The challenge to
introduce the non-concept of iter/alterability is the basic decision to start computation
from the very beginning with complex writing and introducing the game of ambiguous
calculations.

It seems that the very nature of combinatory logic (and lambda calculus) consists in
a complete explication and formalization of the notion of iterability in the modus of
non-ambiguous identity. It therefore doesn’t come as a surprise that the combinatory
and lambda calculus are the ultimate and natural formal foundations of computer pro-
gramming.

The intuitive notions of algorithm and computability are codified by combinatory log-
ic and, in the same sense, by the lambda calculus.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

74

Iterability in Algorithms
Following A.A. Markov an explanation of the intuitive notion of algorithm has to cov-
er some criteria of iterability:
Abstraction of identification, abstraction of potential realizability
,,D. Elementary signs are signs that we shall consider as not having parts. The con-
tent of this concept depends upon the conventions that are assumed. (...)
6. In simultanous consideration of any two elementary signs, we determine wheter
they are the same or different. These concepts are also conditional.

abstraction of identification

7. The possibility of determining when two elementary signs are the same permits
us, applying an abstraction of identification, to speak of two identical elementary
signs or of one and the same elementary sign. On this basis, we introduce the con-
cept of an abstract elementary sign, that is, of an elementary sign, considered up
to identity.

Concrete elementary signs will be considered as representatives of the concorre-
sponding abstract elementary sign. Two concrete elementary signs represent one
and the same abstract elementary sign if and only if they are identical.

8. Lists of elementary signs are called alphabets. We shall call two alphabets equal
if every elementary sign apparing in the first alphabet is identical with a certain
elementary sign apparing in the second alphabet, and conversely. Alphabets con-
sidered up to equality will be called abstract alphabets.*

potential realizability

,»11. Another abstraction, (...), is abstraction of potential realizability. This consists
in departing from real limits of our constructive possibilities and beginning to dis-
cuss arbitrarily long abstract words as if they were constructible. Their realiszabil-
ity is potential: their representatives could be practically realized if we had at our
disposal sufficient time, space, and materials.*

A. A. Markov

Especially the principle of potential realizability of the process of repetition is of im-
portance for the study of the realization of iterability by combinatory logic. It is the prin-
ciple which is responsible for serious problems if thinking as use of signs is connected
with technology: the generous use/abuse of unlimited time, space and material.

My studies are not to much concerned about the different types of infiniteness in the
concept of iterability but much more with the simple question of the beginning and the
plurality of beginnings of whatever infiniteness.

Iter/alter-ability in poly-algorithms

Thus, combinatory logics in polycontextural situations (as well as lambda calculi in
polycontextural situations) have to implement the non-notion of iter/alter-ability at the
very base of its constructions including all types of operators and introducing addition-
ally the reflectional and interactional operators of the whole system complexion.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

75

7.6.3 Y-operator and implicit circularity in combinator definitions
S implies W and W implies S.
"The definition of | in terms of W and K may be obtained thus
X<KXX<WKX
so that we have the definition
I = WK." Curry, p. 157
Identification is defined as elimination of duplication.
Thus, identification is iteration of itself.

A sketch of a poly-combinatorial system can be found, soon, at:
http://www.thinkartlab.com/pkl/lola/poly-combinatory_logics.pdf

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

76

http://www.thinkartlab.com/pkl/lola/poly-combinatory_logics.pdf

7.6.4 Identification vs. thematization

Now we may be prepared to introduce polycontextural strategies at the very begin-
ning of our calculus, combinatory as well as lambda:

Ix=X, identity is often excluded from the calculus, because it is obvious and it can be
defined by S and K. (But this is the same trick as to define the unary negation in logic
with the binary Sheffer Stroke, which surely implies negation.)

Because of the complexity of identification in polycontextural systems, the operator |
deserves its own arena of presentation.

IX means, identification of x as x, thus Ix=x.

Therefore, identification is a special case of thematization. Identification is themati-
zation of something as something and not as something similar or different.

Identification in poly-combinatorial systems is involved in elective decisions, and has
to decide as what something is identified. Elective decisions are decisions between
contextures, selective decisions are decisions made inside of contextures.

Identification of something as something or something else. Identification as what?
A step further has to take account of the question "ldentification by whom?" because
polycontextural systems are societal systems, involving a multitude of acting agents.
Classic calculus is "subjectless”. It doesn’t matter who, where, when etc. the operations
are operated. Therefore, in polycontextural constellations, the operator identification |
is realized in different modi, from the identical I' x' =x' for all sub-systems S' to the dif-
ferent transversal identificators:

I x(M = xi,

Thematization as interpretation and/or thematization as identification. Identifica-
tion, again is, ""giving something a name", that is, identification is abstraction, abstract-
ing identity, an identical property, out of complexity and diversity. Abstraction as
identification is the sense of and behind the lambda calculus. To identify is to iterate
the same as the identical. And this kind of identification determines the kind of iterabil-
ity of the operations.

What is abstraction for the lambda calculus is identification for combinatory logic.
And both are, in an abstract sense, equivalent. At least isomorphic. Thematization is
(the working title) for polycontextural calculi or formal games in general. Another game
starts with the process of morphic abstraction and subversion of morphogrammatics.

Thus, the meta-language identification or identificator Ident is realizing itself as dif-
ferent kinds of specific identificators I'.

I' XM = xI, means the complexion x(™ identified as x'.
Or: x' identified as a part of x(M),

-4 x(M = xi-1 means the complexion x™ identified as sub-complexion X,

With involvement of the super-operators [id, perm, red, repl, bif] a more complex
definition of identificators in polycontextural situations is possible.

Identification is a main operation in the programming scheme ConTeXtures. In a poly-
contextural situations contextures have to be identified, thus, identify contexture(s) is the
programming operation based on the combinatory logic identifiers I. Identifiers plays
two roles, one as an identificator of a contexture and one intra-contexturally as a local
operator.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

77

Iterability and differance
lterability as repetition is based on the identity of its signs, here the name of its op-
erators. For I(I(1)) = I, all occurrences of the name | for the identity operator are iden-
tical. Now, we learn, that this constellation is a very special case for iter/alter-ability
in the modus of sameness. The identical signs are the same without intrinsic differences.

The same is different. I'(U(14))) = | for i=j=k

Signs, terms, are realized at locations, they occur at semiotic places, they have an
index of their occurrence. Thus, signs or marks are not anymore abstract objects, writ-
ten down, by accident, on paper, living in the mind or logosphere of the thinker. Writ-
ten marks are presentations, designs of thoughts and not re-presentations of idealities.

The difference between token/type, occurrence/abstractness, use/mention is de-
placed and deconstructed.

Petitio in principii? Yes! Why not?

Obviously, classic thinking is defending its position easily. My construction is simply
a petitio in principii. | start with the complex constellation, and reduce the classic non-
complex constellation from it. Even worse, | am using the classic notions, methods and
techniques to do it. If we can learn something from the German philosophers and lo-
gician from the 60/70th, then it is this one thing: there is no justification, no legitima-
tion, no proof for the exclusiveness of the existing rationality of logic. There is only the
chance of reconstruction and no foundation, there is no such thing as a Letztbegrind-
ung. Maybe, the methods of Paul Lorenzen had been "amateurish” (Jean-Yves Girard)
but we should learn from his experiences. There is no logical reason for a justification
of THE "Logic of Rules" for the "Rules of Logic". There are surely all sorts of other rea-
sons to restrict thinking and computation to the classic paradigm. But there are no rea-
sons of whatever rationality to deny the possibility to start, for a beginning, with
complex in contrast to the simple options. Circularity of my option? For whom-as what?
Perhaps it is better to be aware of ones circularity than to deny ones fundamentalism.

Variants of K and S
For classical combinatory logic the identificator operator | seems to be quite super-
fluous. For transclassic combinatory logic the multitude of different identificators I' are
basic. Variants of identificators opens up variant definitions of the main operators S
and K. Because each operator is identical with itself I(K)=K and I(S)=S, different kinds
of operators K and S can be defined depending on different identificators:

1(S™M)= S This operation is self-applicable: I'(1M)= |,
This kind of specification is an

[thematize[CL [(SKI)(3) 1 election of a contexture out of a
compound contextures.In other

contextures'? words, also classic formulas are
Identlfym:l_l |dent|fy[([:|_2 Idmtlfym:LS "bound" by the Operation "iden-

tify". Because there is only one

operators operators operators identity and one way to identify
[terms] [terms] [terms] in classic systems this operation
can be omitted. But it is never-

theless decisive in an implicit
way. Transclassic systems with many options of identification, that is thematizations,
have to identify their contextures and formal systems explicitly.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

78

8 Don’t halt the halting problem to halt

As shown before, and especially in Gédel Games, iteration can happen in different
ways. lterability has realizations as iterating the identical or as iterating the same,
while the sameness is not identical to identity. Substitution as well as quotation or nor-
mation is a form of iterability or repeatability and can therefore be realized in different
forms. Because of the tabular structure of m-lambda calculi problems of decidability
like the halting problem has to be distributed over the interactional and reflectional di-
mensions.

The proof that the halting problem is noncomputable relies on the same device illustrated in
the preceding paradoxes and used by Goedel to prove his Incompleteness Theorem: self-
reference.

Suppose there is an algorithm H to solve the halting problem: given an encoding of a pro-
gram P and an input string x, it returns ‘true® if program P halts on input x, and *false" oth-
erwise. Use H as a subroutine to perform the conditional test in the following program H'(as
formulated by Floyd and Beigel, p. 479):

input x, a string which encodes a program

if program x halts on input x then

loop forever

else

halt

Note that this program passes its input string to the subroutine H both as the encoding of a
program (or, equivalently, a Turing machine) and as the input string for which we are to
determine if program x halts. This means that H' halts on input x only if x doesn't halt on
input X.

What happens if we give H' its own description as its input string?

Hoare and Allison re-state the conclusion this way (in "Incomputability”, Computing Surveys
4, no. 3 [Sept. 1972]):

Any language containing conditionals and recursive function definitions which is powerful
enough to program its own interpreter cannot be used to program its own ‘terminates’ func-
tion.

http://www.augustana.ab.ca/~mohrj/courses/1998.fall/csc110/lecture_notes/
turing_machines.html

http://www?2.informatik.uni-erlangen.de/Forschung/Publikationen/download/com-
put.pdf?language=de

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

79

http://www.augustana.ab.ca/~mohrj/courses/1998.fall/csc110/lecture_notes/
http://www2.informatik.uni-erlangen.de/Forschung/Publikationen/download/com-put

9 Reductional closure

Thesis. The reduction procedure is preserving the conditions of mediation. If a com-
plex formula is in CM, then the reduction to its normal form is in CM.

Proof.

Inductively over the formulas and substitution rules.
Additional:

Condition is that, if X is in Cm, then super-ops(X) is in CM
Combination of super-operators have to fulfil CM.

That is, not all combinations are in CM.

t™ ecM,u™ ecM = <tu>"ecm
<tu>"eCM = <tu>" and <t,u>"eCM

(m

(m))
(Ax.u) t™ ccM = u™ [t/ x] eCM

9.1 Combining super-operators

Identity. Trivial

Replication. Trivial??

Permutation. Obvious.

Bifurcation. Not specially problematic, because CM-formulas are distributed over
different places preserving the CM-properties of the distributed formulas or parts of for-
mulas.

Reduction. Problematic. Not all reductions are preserving the CM-properties. That
is, the reduction operators have to be defined properly.

X" €CM 2> BopsiiX™) M :
X" ecM B X") eCM
X™ €CM 2= (Fepl [IX™) eCM
X" €CM B> permlfX™ | eCM
X" eCM ETed X") eCM
X" ecM 2= bif X") ecm
To verify these consequences clear specific definitions of the single super-operator
are needed.

Even such weak transformations like replications and reductions can violate the con-
ditions of mediation.

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

80

10 Towards General Architectonics for Lambda Calculi

10.1 Architectonics with 4 contextures: One more stroke!

Architectonic designs for 4 contextures are still quite simple: the linear and the arbo-
real distribution of calculi. Because of the super-additivity principle, in both cases we
get 6 contextural compounds for a complexity of 4. That is, 3 basic and 3 mediated
contextures and their calculi.

10.1.1 Linear distribution of lambda calculi

samba,, ¥ [id, red,, red,, id,, id,, id,]
identify contextures'”

thematize (reduction)

(AZ' <y100001’ Xot1110 >) <y<4>’ X(4>>
l} fa.
<<y(3>’ X(S) >1oooo1 <y(3)' X(s) >011110>
ll subst
<Xl, yz’y31y4’ ys’ NG ><y1’ X2, X3, X4, X5,y6>

Il [id, red, red, id, id, id]

(O yhyhye, v, xE) (vt i, x, X6, x8,y°)

l} collection

[0,y by o byt e)y,) e,)

—_—
>
N

—
<
-
IS}
o
o
S
=3
X
o
=
=
[
=
o
——
Nt
——
<
S
x
S
—
=)
=
@
o
=
@
o
S
S
S
—_——
<
N
>
-
—~——
w
—
<
(2]
x
(2]
—~——
(4]

()\Z' <y100001’ XOllllO >> <y(4)’ X(4)>

[id, red,, red,, id, id, id]

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

81

10.1.2 Arboreal distribution of lambda calculi
With a complexity of 4, new architectonic possibilities are entering the game. Addi-
tional to the known linear order of distribution, some structural differences enter into

the dynamics of architecture. The possibility of an architectonic simultaneity of 2 con-
textures are introduced.

3-Star pattern without mediating sub-systems

S5
., ///T5—>F5 T.,9 @
s1 I - F¢1 -7 ; F,T, T,
T1—» F1°
e S -
I s2 T~ T
» ~ T2 —» F2 g, @, F5

The main sub-systems are S1, S2 and S5. Sub-systems,
mediating the main sub-systems are, in the full matrix, [T, &, T,, &, &, T,
S3=(T3, F3), S4=(T4,F4) and S6=(T6,F6).

An entity of an 4-arboreal architecture which is not be- T, 2,2, T, @
longing to, say, sub-system1 can belong at once to sub- |, F,, F,, T,, &, &
system2 and to sub-system5. e, @, 2,F, Fs’ Fa

This architectonic simultaneity or parallelity is not

S°: P [E] — P [E] to confuse with the kind of simultaneity produced
gl-p [E]) [E] by transtjunct.lons and bifurcations. Arck_utectonlc

parallelism, in contrast to many other intra-con-
S PEl - PIE'] textural kinds of parallelism, is based on the dis-

contexturality of a multitude of different mediated
contextures. Transjunctional simultaneities are generated intra-systemically by the su-
per-operators of the system, like BIF, independent of the grounding architectonics of the
system itself. Therefore, linear architectonics are containing transjunctions but no archi-
tectonic parallelisms. Architectonic parallelity contains additionally all kind of trans-
junctional operators. This difference has to be studied in detail. (In earlier papers the
term architectonic parallelism was used also for transjunctional parallelism in contrast
to common parallelity notions in programming.)

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

82

10.1.2.1 Syntax of 4-arboreal languages

x(4)’ Y<4) € CL(4)arboreaI = <X3’ y3><X4, y4>

XUy el = by ey by e,y ik y e v

10.1.2.2 Reduction rules for a 4-arboreal lambda calculus

samba_“[id]

arboral

identify contextures

thematize (reduction)

()\Z. <le0001, X 11110 >)<y(4)’ X(4)>
U fa.
(9, X9 o 5, x))
‘uSUbSt
O vz vy vt e)y K xty?)
‘U’CO”ecnon
O T T TR YL

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES 83

(4) 5 4(a)
Iambaarboral [ld]

identify contextures®

thematize (reduction)

(AZ <y101001’ XOlOllO >) <y(4) ! X(4)>
‘U pa.

Usubst
(x4, {y2,x®),y%, y*, x®)y

ey (v x2) e,

‘U collection

V),

<<y(4) ! X(4) >101001 <y<4) ! X<4) >010110 >

xxy>

), ye)

© Rudolf Kaehr

Februar 16, 2006 9/16/05 DRAFT

DERRIDA'S MACHINES

10.2 Architectonics with 5 and more strokes (contextures)

It seems to be clear now, how to map lambda calculi onto architectonic structures.
Also the definition of the architectonic structures with their proemial relations are well
introduced. All that seems to be not only quite simple but maybe even trivial. This te-
dious approach is motivated by the idea to give a concrete realization of distribution
and mediation. A much more general approach could be chosen by the use of fibera-
tion, indexing and other constructions well known from category theory and general
algebra. But as mentioned somewhere else before, the abstract approach is not guid-
ing necessarily a concrete construction. After the work is done, it is appropriate and
helpful to involve a more abstract approach to the topology of disseminated lambda
calculi.

10.2.1 Some more stuff to do!

Diagramm 11 3-Star-1-line pattern without mediating sub-systems
_ I5—>»F5
e ¢ - Tl' @, @, @
-~ - ~ -
1T —»F1_~ Fl’Tz’Ts’ Z
- 4 T~ 2, F, 2T,
T2 —— P2 @, o, F, 2
T~ 3 T~ @, 2, 2, F,
TS T7T—» F7
s°: PlE] - PlE']
st:PlE] - P[E]
s?: PlEl - P[E]
S PlE] - PlE"]

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

Diagramm 12

4-Star pattern without mediating sub-systems

_T5 ——»F5

e ¢ ~
-~ -
P -~
T1 —»Fl\/\
\\\\ t\ \\\
~ T2 F2
\ _ \ -
T7 < yF7-
S5 PlEl = PlE"]
st:plE] = PlE']
S?: PlE] - PlE’]
S plEl = PlE"]

T,.92 2,0
F,.T,,T.,T,
2, F, 0,0
2, 2, F, o
@, 2,2, F,

Systems having more than one direct neighbor.

© Rudolf Kaehr Februar 16, 2006 9/16/05

DRAFT

DERRIDA'S MACHINES

86

11 Some ends are just beginnings

Now, we can easily restart the game at the beginning of the text, involving some
more interesting architectonics.

Maybe, supported by some computer implementation and computer-assisted formal-
izations.

sketch — horizon‘™
build — architectures
thematize — scenarios
identify — frameworks
define —operations
abstract — function
{propose - statements}

© Rudolf Kaehr Februar 16, 2006 9/16/05 DRAFT DERRIDA'S MACHINES

87

C. Types and Contextures

To restart the game again we should introduce some more specific differentiations.
Until now, our objects obs and complex polycontextural objects c-obs had not been
differentiated into different sorts, structures, modules or types. They had been used as
abstract syntactic objects and had no semantic specification. Like in first order logic
where we have a general universal domain of individuals without any intrinsic differ-
entiation and then all kind of sorts defined over this abstract domain, lambda calculus
is introducing types over the abstract obs and functions. Thus, it is called typed lambda
calculus. Obviously, computer programming, programming languages, need sorts and
types or data structures to achieve some flexibility and efficiency for calculations.

The introduction of types into programming allows to differentiate between mono-
morphic and poly-morphic types. And a whole machinery of techniques of realizations
can start on the base of these important distinctions.

From a polycontextural point of view all these type assignments are of hierarchical
order. Types are assigned to untyped obs. Thus, first are the (untyped) uniform and ho-
mogene objects obs and then, based on them, a system of type assignment is intro-
duced. These type systems themselves may have a complex structure and interesting
properties of interdependences between types can be studied.

Between terms (or obs) and types a stable relation of strict order is installed. An ob
will not become a type and a type will not become an ob in a consistent calculus. Thus
the whole systems crystalline unambiguity is ultimately realized. This is the nature of
eternal truth. This may even be beautiful, at least per se. But is it not at the same time
the ultimate "Killerapplication™ if we have to live with it?

Where there is difference there should be change, too.

In other words, it should be possible to reverse hierarchies. This is not the beginning
of anarchy but the event of chiastic interplays of metamorphosis, i.e. heterarchy.

On the base of the concept of chiastic types the neutrality and abstractness of the
abstract objects "obs" is broken. Abstract objects obs can play the role of types too.
And other types can play the role of obs. Thus, obs are not obs. Obs are obs as obs.
But obs as types are not obs but types.

Thus, the language in which types are defined can act as a type itself.

How does it work?

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

89

1 Types in Lambda Calculus

"A type denotes a collection of values. A function’s argument type specifies which
values could be returned as a result." Paulson, p.55

5.1. DEFINITION. The set of types of A—, notation Type(A—), is inductively
defined as follows. We write T = Type(A—). Let V = {a,d/,...} be a set of
type variables. It will be convenient to allow type constants for basic types such
as Nat, Bool. Let B be such a collection. Then

aceV = oaeT,
BeB = BcT,
o, 7T€T = (o6—=7)€T (function space types).

For such definitions it is convenient to use the following abstract syntax to

form T.
T=V|B|T—T
with
V=a|V (type variables).
NotaTION. (i) If 01,...,04 € T then
T1—+09—> - —+0p
stands for

(o1=(o2— - - - = (on-1—0m)));

that is, we use association to the right.
(ii) a,B,7,... denote arbitrary type variables.

5.2. DEFINITION. (i) A statement is of the form M : o with M € Aand o € T.
This statement is pronounced as ‘M in ¢’. The type o is the predicate and the
term M is the subject of the statement.

(ii) A basis is a set of statements with only distinct (term) variables as
subjects.

Barendregt 1994, p. 36

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

2 Towards chiastic types in Lcm

2.1 Basic chiasms of types

"The type o is the predicate and the term M is the subject of the statement."

The statement "M : ¢" is prononunced as 'M in ¢’.

M is a formula, o is a type, and M : ¢ is a statement of the typed LC.
M : o, obviously, this term is ruled by an order relation between M and o, M —> .
And more obviosly, M : o belongs to one and only one system of lambda calculus LC.

And again, things are dramatically different for systems like Lc(™ where typed or not
typed lambda calculi are disseminated over different kenomic loci.

Chiasticfypesihmc®

LC![IM [Ior , .

Mmmm AKindlaf@formulalfor [éhiasml(M,[d)

LCZEDVID])_ M32M1—>O’1$M2—>O’2£O’3
or

LC! CIM Cldr Mi—0o" IM*—0"

\ 2 (T
LC? I M? (T (&

The diagram
models the
simple chias-
tic relations
between for-
mula and type
of a statement
distributed

over two loci,
representing
two different
lambda calcu-
li. At each lo-

cus, formula and type are in an order relation. Between formula and type of different
loci an exchange relation holds. To not to exchange into the blue sky, coincidence re-
lations between types (formulas) of different levels have to be realized. All together are
fulfilling the condition of proemiality (PR) or chiasm, thus the construction is sound.
This simple presentation is modeling the wording "types becomes formulae and for-
mulae becomes types". (And types fit together and terms fit together.) It can be consid-
ered as an abbreviation of the complex presentation realized by the as-abstraction
developed below. System LC? is, additionally, mediating the two systems LC and LCZ.

[thematizelghiasm(M,)"°
[contextures'
identifyLC* identifyCc*] .
M M identify[1L.C
o)
o o
[elect[Mz]] [electEirl]] [o]

This first and simple kind
of modeling the chiasm
between subject and
predicate, formula and
types, is put into the
bracket formalism of dis-
tributed lambda calculi
or lambda based pro-
gramming languages
ARS.

The operator "elect™ is a
trans-contextural selec-

tor as the operator sel is an intra-contextural selector of ARS. Lambda calculi LC in com-
plex situations have to be identified, thus identify LC. And the thematization has to be
chosen, thus thematize chiasm (term, type) in the constellation Lc®).

© Rudolf Kaehr

Februar 16, 2006

9/8/05 DRAFT

DERRIDA'S MACHINES

91

Full explanation of chiasms for types

Ol 02 03
M1 M2 M3 | M1/M2|M3 | M1 M2 M3
M # M| # | #| #|M PM |01 02 O3
il Il M1|S S @
C}NI‘ | | o | M2ls s @
| 0¢“) v M3|o @ S,

G120 G120 Goos

The wording here is not only "types becomes terms and terms becomes types" but
"a type as a term becomes a term" and, at the same time, "a type as type remains a
type" . Thus, "a type as a term becomes a term and as a type it remains a type". And
the same round for terms.

Full wording for a chiasm between terms and types over two loci

Explicitly, first the green round,

"A type o1 as a term M?1 becomes a term M?1 and as a type o11

it remains a type ot-1".

And,

"A type 622 as a term M2 becomes a term M2 and as a type ¢2-2

it remains a type 2",

And simultaneously, the second round in red, the same for terms:
"Aterm M1 as a type o1 becomes a type 021 and as a term M1-1
it remains a term M1-1".

And,

"Aterm M?? as a type o2 becomes a type 022 and as a term M?2
it remains a term M2-2".

And finally, between terms M1 and M?-2, and types o1 and ¢®-2, a categorial
coincidence is realized. To round up, the same coincidence holds for terms and types
of LC12 and LC?L.

Thus, a type has two functionalities at once, a type as a type and a type as a term.

Therefore, this double meaning has to be distributed over different localization of the
complex constellation. Otherwise it simply would produce unnecessary conflictive
overlapping. The matrix shows clearly the kind of distribution, the diagram is visualiz-
ing the process of the chiasm.

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

92

Putting the rounds together

[thematizelghiasm(M,&7)"*
[contexture®
[TidentifylC** 17[[identifyLC?*
‘M ‘M
o |[] identifyL.C*®
| [elect™ “]} [identifyL.C2 M
identify1L.C*2 M [[O]I
M o
[0]} [elect (o™]‘

Final round up of chiastification
We can round up the whole procedure of chiastification of types and terms in dis-
seminated lambda calculi by introducing elect LC. The exchange between types and
terms is involving a switch of sub-systems and not only a switch of the categories "type/
term", thus the full mechanism of chiasms, that is PR=[term, type, LC1, LC2], has
to implement this system change, this happens with elect LC.

 thematizelghiasm(M,)"*
[contexture®
[identifyrwctt | || [identify@C**]]
(M (M
\(0)) _k(O)J | | TidentifyrLc??
[dlectC*] ||| [identifymC?? | [|(M
:identinyI]_C“-' (M) \(o))
(M) \(o))
L) ||[|[eectie] ||

A first lesson

Polycontextural systems are, per se, untyped systems. They can contain typed sys-
tems of all kind. But they are, as such, not reducible to typed systems. Again, the dif-
ference is between hierarchic and heterarchic order of complexities. Typed systems are
in a strict sense hierarchic, polycontextural systems are ultra-strict heterarchic. Heterar-
chic systems are distributing and mediating hierarchic systems. Also heterarchic sys-
tems are not reducible to hierarchic systems it is possible to model and simulate them
as hierarchic in hierarchic environments like computer implementations, cf. PKL-1.1.

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

An early chiasm between universes and sorts in discontextural first-order logics.

MU el seovltleA v Pt e e tont]] o
T‘ ?&‘GWU! &&"‘ \A-w,f-e BLE’? yo# Www“hk’

Do b f'(wnf;&.w%e)zln
\é/\c’) ! “. - ' N NN
- - - 5 W-51%5
B E)%(SCZX“'X 5sw >?§5‘.+)

i - ‘ \LHL[@»&('(M&W
‘F? e\ss ~~-/»ée.m b e,

1\{ i s . L
pm LV H? — Reed 4_(1) [\4“/) 5%&
x\ -

The modeling strategy for chiastic types in polycontextural situations is similar to the
modeling strategy for chiasms in many-sorted logics. There, the chiasm is between uni-
verse(s) and sorts of disseminated logics. Sorts in one logic can change to become uni-
verses in other mediated logics. And in reverse, universes can change to sorts. Thus,
chiasms are equally operating on many-sorted algebras as on typed calculi.

© Rudolf Kaehr

Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

94

Classification paradigms: Sorts and Types

To contrast the very strict introduction of types in lambda calculus (by Barendregt) a
more philosophical approach, offered by Peter Wegner, can help to deliberate the
mind to understand the quite speculative adventures of polycontextural constructions of
chiasms between statements and sorts.

A very broad and deep methodological analysis of typed systems in computer pro-
gramming, not reduced to functional programming languages, is given to read by:

Peter Wegner, The Object-Oriented Classification Paradigm, pp.479-560, in: Re-
search Direction in Object-Oriented Programming, ed. B. Shriver, P. Wegner, Comput-
er Systems Series, MIT Press 1987

Internal and external use of the as-abstraction

In the context of typed lambda calculus the use of the as-abstraction is of importance
for the interpretation of the calculus. But this procedure of taking something as some-
thing else is external and not implemented into the calculus itself.

Some as-interpretations:

— types and terms as programs and specifications,

— propositions-astypes and proofs-as-terms (Bruijn, Howard),

— types and terms as category theoretic notions.

Obviously, the lambda calculus as such is interpreted, used as something for some
other purposes. Vaguely, it is a semantic interpretation of the syntactical system lamb-
da.

In contrast, the as-abstraction is basic for the paradigm of "lambda calculi in poly-
contextural situations™, short poly-lambda calculi. Thus, it is a kind of an internal real-
ization of the as-abstraction, while the semantic interpretation is some kind of an
external use of the as-abstraction. The theory of such an external use of the as-abstrac-
tion is moved to a "modeling theory" or theory of modeling, not to confuse with logical
model theory.

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

95

3 Further developments: Type Derivations

On the base of the introduction of the concept of chiastic types the whole machinery
of typed lambda calculus can be reconsidered and involved into a chiastification of its
concepts and techniques.

This becomes more obvious if we introduce notions like "function space types" and
"derivations" because these terms are in some sense more dynamic than the purely
structural notions of types and terms and their chiasms.

3.1 Monocontextural type derivations

Typed languages are of high importance for the design of programming languages.
Functional languages, which are based on lambda calculus, are directly connected
with typed lambda calculus.

5.3. DEFINITION. Type derivations in the system A— are built up from as-
sumptions z:0, using the following inference rules.

M :o—>71 N:o M':'r
MN 7 Az M :o0—>T1

5.4. DEFINITION. (i) A statement M : o is derivable from a basis T', notation
'-M:e

(or I' by M : o if we wish to stress the typing system) if there is a derivation
of M : ¢ in which all non-cancelled assumptions are in I'.
(ii) We use - M : o as shorthand for 0 - M : o.

Barendregt, 1994, p. 35

3.2 Meta-theoretic results

Interesting questions about the procedure of type assignment can be put and an-
swered. Topics are "typechecking"”, "typability" and "inhabitation".

Decidability of type assignment

For the system of type assignment several questions may be asked. Note that
for T' = {z1:01,...,Zp:0,} one has

F'FM:o & F(Azpoy---Argion. M) : (0123 - 2o, —0),

therefore in the following one has taken T' = (). Typical questions are

(1) Given M and o, does one have - M : o7
(2) Given M, does there exist a @ such that - M : a?
(3) Given o, does there exist an M such that - M : a7

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

96

The procedure of type assignment is decidable. This is of great importance for theo-
retical and practical (programming) reasons.

These three problems are called type checking, typability and inhabitation re-
spectively and are denoted by M :a?, M : Tand 7 : 0.

Type checking and typability are decidable. This can he shown using the
following result, independently due to Curry (1969}, Hindley (1969), and Milner
(1978).

5.13. THEOREM. (i) Tt is decidable whether a term is typable in A—.

(ii) If a term M is typable in A—, then M has a principal type scheme, i.e.
a type o such that every possible type for M is a substitufion instance of o.
Moreover o is computable from M.

5.14. COROLLARY. Type checking for A— is decidable.

3.3 Complexity as polymorphism of types

"Generally speaking, an object is polymorphic if it can be regarded as having mul-
tiple types.” Paulson, p.55

Polymorphism

Note that in A— one has
Fl:o—=o for all & e T.

In the polymorphic lambda calculus this quantification can be internalized by
stating

Hl: Va.o—ro.

5.15. DEFINITION. The set of iypes of A2 (notation T = Type(A2)) is specified
by the syntax
T=V|B|T—T|VY.T.
5.16. DEFINITION. The rules of type assignment are those of A—, plus
M :Vao M:a
M : ola:=T1] M :Va.o

In the latter rule, the type variable &v may not occur free in any assumption on
which the premiss M : o depends.

These "Bytes and Pieces" should be helpful to clarify the conceptual difference be-
tween typed lambda calculi and polycontextural dissemination of lambda calculi.

The real stuff about Lambda: Summer Lambda School, Lambda Calculus, Nijmegen,
July 812, 1991, University of Nijmegen, The Netherlands.

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

3.4 Complexity as polycontexturality of calculi

Typed languages are helping to avoid collisions with incommensurable sorts, like
"adding 3 volts with 2 amperes". Type-free languages are not restricting such use. Thus
all sorts of confusion and bad self-referentiality can happen. Polycontextural calculi,
typed or untyped, are not in contradiction to such house-holding strategies but also
don’t agree with the denial of not avoidable incommensurability. Obviously, non-avoid-
able incommensurability (Paul Feyerabend) have to be distributed heterachically over
different contextures, thus avoiding confusional conflicts as well as accepting incom-
mensurability in complex situations.

One and zero-typed or -sorted systems are as such by definition neither interactional
nor reflectional. Simply because they don’t have the possibility to distinguish concep-
tually between system and environment. For them, everything belongs to the system.

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

98

3.5 Metamorphic type transformations

As shown in ConTeXtures, different kinds of metamorphic abstractions, changing
from types to types, crossing different contextures in reflectional and interactional be-
haviors, are possible. ConTeXtures are dealing with types as topics, mono- and poly-
topics of complex constellations of programming languages.

This reflectional metamorphic transforma-

samba® (repl,[@,[®) - horizon tion example shows a polytopic situation
rthematize (zero, il (False) 1 with the topics Number, List and Boolean.
Thus, "define name" is an abbreviation of

[[identify contexture,,] 1| rdefine name; as name;" with i=j.
(define Zero \ — replication repl, in this example, is a

metamorphic replication and not replicat-
(lambda (L ') R ing isolated configurations.

L(E[anbdafﬂiki)lJ Exchange relations:

(LTI - "define zero" is "define zero as zero", as
the start of the levels. It could itself be pro-
duced by a predecessor level.

(define zero,, as nil) mmed| & define zero in contexture; 1 as zero in
L/Ianbdammg] \ J o contextureq 1

kD]]I[I]]]]]]II’ueJ — "define nil" is "define zero as nil",

ridentify contexture, , as: define zero from contextureq 4 as nil in
contextureq »

[identify contexture,,

(define nil , as false)

lambda{aB} (P [y - "defirle fa!se" is "define nil as false". .
(I as: define nil from contexture, , as false in
LL contextureq 3.

Obviously, transcontextural type transformations are not identical with intra-contex-
tural type derivations. The first are crossing the borders of contextures, from types in
one contextures to other types in other contextures. This can happen successively, from
one contexture to another contexture, or simultaneously, from a multitude of types in
one or more contextures to a multitude of different types of different contextures.

4 Types and Paradoxes

In hierachic type systems paradoxes can be avoided by disallowance. Paradox sen-
tences are simply wrongly typed and therefore not part of the game. As a result, all
strict self-referential statements and constructions are excluded from typed systems. This
strategy is well known by Russell’s "vicious circle principle".

Again, self-referential statements are not to be confused with recursive constructions
and "bootstrapping™.

http://www.doc.ic.ac.uk/~rah03/suprema/index.cgi?section=church

© Rudolf Kaehr Februar 16, 2006 9/8/05 DRAFT DERRIDA'S MACHINES

99

http://www.doc.ic.ac.uk/~rah03/suprema/index.cgi?section=church

